Vector bundle of prym differentials over Teichm\"uller spaces of surfaces with punctures
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 263-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study multiplicative meromorphic functions and differentials on Riemann surfaces of finite type. We prove an analog of P. Appell's formula on decomposition of multiplicative functions with poles of arbitrary multiplicity into a sum of elementary Prym integrals. We construct explicit bases for some important quotient spaces and prove a theorem on a fiber isomorphism of vector bundles and $n!$-sheeted mappings over Teichmüller spaces. This theorem gives an important relation between spaces of Prym differentials (Abelian differentials) on a compact Riemann surfaces and on a Riemann surfaces of finite type.
Keywords: Teichmüller spaces for Riemann surfaces of finite type, Prym differentials, vector bundles, group of characters, Jacobi manifolds.
@article{JSFU_2019_12_3_a0,
     author = {Alexander V. Chueshev and Victor V. Chueshev},
     title = {Vector bundle of prym differentials over {Teichm\"uller} spaces of surfaces with punctures},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {263--275},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a0/}
}
TY  - JOUR
AU  - Alexander V. Chueshev
AU  - Victor V. Chueshev
TI  - Vector bundle of prym differentials over Teichm\"uller spaces of surfaces with punctures
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 263
EP  - 275
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a0/
LA  - en
ID  - JSFU_2019_12_3_a0
ER  - 
%0 Journal Article
%A Alexander V. Chueshev
%A Victor V. Chueshev
%T Vector bundle of prym differentials over Teichm\"uller spaces of surfaces with punctures
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 263-275
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a0/
%G en
%F JSFU_2019_12_3_a0
Alexander V. Chueshev; Victor V. Chueshev. Vector bundle of prym differentials over Teichm\"uller spaces of surfaces with punctures. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 263-275. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a0/

[1] A.B. Bogatyrev, “Real meromorphic differentials: a language for describing meron configurations in planar magnetic nanoelements”, Theoretical and Mathematical Physics, 193:1 (2017), 1547–1559 | DOI | MR | Zbl

[2] L. Ahlfors, L. Bers, The spaces of Riemann surfaces and quasi-conformal mappings, IL, M., 1961 (in Russian) | MR

[3] H.M. Farkas, I. Kra, Riemann surfaces, Grad. Text's Math., 71, Springer, New-York, 1992 | DOI | MR | Zbl

[4] C.J. Earle, “Families of Riemann surfaces and Jacobi varieties”, Annals of Mathematics, 107 (1978), 255–286 | DOI | MR | Zbl

[5] V.V. Chueshev, Multiplicative functions and Prym differentials on a variable compact Riemann surface, v. 2, KemGU, Kemerovo, 2003 (in Russian) | Zbl

[6] V.V. Chueshev, M.I. Tulina, “Prym differentials on a variable compact Riemann surface”, Matematicheskie Zametki, 95:3 (2014), 457–474 (in Russian) | DOI | MR | Zbl

[7] A.S. Mischenko, Vector bundles and their applications, Nauka, M., 1984 (in Russian) | MR

[8] A.V. Chueshev, V. V. Chueshev, “The residue theorem and an analog of P. Appell's formula for finite Riemann surface”, Science Evolution, 1:1 (2016), 40–45 | DOI | MR