On a quantum logical element associated with the radical of a complex matrix
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 222-230
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct new quantum logical elements realised by radicals of complex matrices. The geometry of these radicals is studied on the Reinhardt diagram.
Keywords:
logical element, quantum computer, Reinhardt diagram.
Mots-clés : matrix radical
Mots-clés : matrix radical
@article{JSFU_2019_12_2_a8,
author = {Matvey E. Durakov and Anton S. Kerp and Anton S. Lukotkin},
title = {On a quantum logical element associated with the radical of a complex matrix},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {222--230},
year = {2019},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a8/}
}
TY - JOUR AU - Matvey E. Durakov AU - Anton S. Kerp AU - Anton S. Lukotkin TI - On a quantum logical element associated with the radical of a complex matrix JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 222 EP - 230 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a8/ LA - en ID - JSFU_2019_12_2_a8 ER -
%0 Journal Article %A Matvey E. Durakov %A Anton S. Kerp %A Anton S. Lukotkin %T On a quantum logical element associated with the radical of a complex matrix %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 222-230 %V 12 %N 2 %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a8/ %G en %F JSFU_2019_12_2_a8
Matvey E. Durakov; Anton S. Kerp; Anton S. Lukotkin. On a quantum logical element associated with the radical of a complex matrix. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 222-230. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a8/
[1] Yu.I. Manin, Computable and Uncomputable, Sovetskoe radio, M., 1980 (in Russian) | MR
[2] P. Benioff, “Quantum mechanical hamiltonian models of turing machines”, Journal of Statistical Physics, 29:3 (1982), 515–546 | DOI | MR | Zbl
[3] R.P. Feynman, “Simulating physics with computers”, International Journal of Theoretical Physics, 1982, no. 6, 467–488 | DOI | MR
[4] A.K. Guts, Complex analysis and informatics, Omsk Gos. Univer., 2002 (in Russian)
[5] B.V. Shabat, Introduction to complex analysis, v. 2, Nauka, M., 1976 (in Russian) | MR
[6] F.R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing ; Reprinted by American Mathematical Society, 2000 | MR