The influence of changes in the internal energy of the interface on a two-layer flow in a cylinder
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 213-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact solution of the equations of the creeping flow model with the Himentsa type velocity field is considered in this paper. The solution describes thermocapillary convection in layers. It is interpreted as the motion of viscous heat-conducting liquids in a cylinder with solid walls and combined movable non-deformable interface. At the same time there are no mass forces. From a mathematical point of view the resulting initial-boundary problem is inversible and nonlinear because the total energy condition at the interface is taken into account. It is established that there can be two such solutions.
Keywords: nonlinear inverse problem, Marangoni number, energy condition, creeping thermocapillary motion
Mots-clés : Himentsa solution.
@article{JSFU_2019_12_2_a7,
     author = {Evgeniy P. Magdenko},
     title = {The influence of changes in the internal energy of the interface on a two-layer flow in a cylinder},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {213--221},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a7/}
}
TY  - JOUR
AU  - Evgeniy P. Magdenko
TI  - The influence of changes in the internal energy of the interface on a two-layer flow in a cylinder
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 213
EP  - 221
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a7/
LA  - en
ID  - JSFU_2019_12_2_a7
ER  - 
%0 Journal Article
%A Evgeniy P. Magdenko
%T The influence of changes in the internal energy of the interface on a two-layer flow in a cylinder
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 213-221
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a7/
%G en
%F JSFU_2019_12_2_a7
Evgeniy P. Magdenko. The influence of changes in the internal energy of the interface on a two-layer flow in a cylinder. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a7/

[1] A. Adamson, Physical chemistry of surfaces, Mir, M., 1979

[2] J.F. Harper, D.W. Moore, J.R.A. Pearson, “The effect of the variation of surface tension with temperature on the motion of drops and bubbles”, J. Fluid Mech., 27 (1967), 361 | DOI

[3] V.K. Andreev, V.E. Zakhvatayev, E.A. Ryabitsky, Thermocapillary instability, Monograph, Nauka, Novosibirsk, 2000 (in Russian) | MR

[4] F.E. Torres, E. Helborzheimer, “Temperature gradients and drag effects produced by convection of interfacial internal energy around bubbles”, Phys. Fluids A, 5:3 (1993), 537–549 | DOI | MR | Zbl

[5] V.K. Andreev, “On the Friedrichs inequality for compound domains”, J. Sib. Fed. Univ. Mat. and Fis., 2:2 (2009), 146–157 (in Russian)

[6] V.K. Andreev, Yu.A. Gaponenko, Mathematical modeling of convective currents, KrasGU, Krasnoyarsk, 2006 (in Russian)

[7] V.K. Andreev, V.V. Puhnachev, “Invariant solutions of the equations of thermocapillary motion”, Numerical methods of continuum mechanics, 14, no. 5, Novosibirsk, 1983, 3–23 (in Russian) | MR | Zbl

[8] G. Bateman, A. Erdein, Higher transcendental functions. Bessel functions, parabolic cylinder functions, orthogonal polynomials, Nauka, M., 1974 (in Russian) | MR

[9] V.S. Vladimirov, Equations of mathematical physics, Nauka, M., 1976 (in Russian) | MR

[10] S.G. Mikhlin, Linear Partial Differential Equations, High school, M., 1977 (in Russian) | MR

[11] L.V. Ovsyannikov, Group analysis of differential equations, Nauka, M., 1978 (in Russian) | MR | Zbl

[12] A.P. Prudnikov, Yu.A. Bychkov, O.I. Marichev, Integrals and series. Special functions, Nauka, M., 1983 (in Russian) | MR | Zbl