Logarithmic barrier method via minorant function for linear programming
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 191-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose in this study, a new logarithmic barrier approach to solve linear programming problem. We are interested in computation of the direction by Newton's method and of the displacement step using minorant functions instead of line search methods in order to reduce the computation cost. Our new approach is even more beneficial than classical line search methods. This purpose is confirmed by many interesting numerical experimentations shown the effectiveness of the algorithm developed in this work.
Keywords: linear programming, logarithmic barrier methods, line search.
@article{JSFU_2019_12_2_a5,
     author = {Assma Leulmi and Soumia Leulmi},
     title = {Logarithmic barrier method via minorant function for linear programming},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {191--201},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a5/}
}
TY  - JOUR
AU  - Assma Leulmi
AU  - Soumia Leulmi
TI  - Logarithmic barrier method via minorant function for linear programming
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 191
EP  - 201
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a5/
LA  - en
ID  - JSFU_2019_12_2_a5
ER  - 
%0 Journal Article
%A Assma Leulmi
%A Soumia Leulmi
%T Logarithmic barrier method via minorant function for linear programming
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 191-201
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a5/
%G en
%F JSFU_2019_12_2_a5
Assma Leulmi; Soumia Leulmi. Logarithmic barrier method via minorant function for linear programming. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 191-201. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a5/

[1] J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, C. Sagastizabal, Numerical optimization, theoritical and pratical aspects, Springer-Verlag, 2003 | MR

[2] J.P. Crouzeix, B. Merikhi, “A logarithm barrier method for semidefinite programming”, RAIRO Oper. Res., 42 (2008), 123–139 | DOI | MR | Zbl

[3] J.P. Crouzeix, A. Seeger, “New bounds for the extreme values of a finite sample of real numbers”, Journal of Mathematical Analysis and Applications, 197 (1996), 411–426 | DOI | MR | Zbl

[4] R.M. Freund, S. Mizuno, “Interior point methods: Current status and future directions”, Optima, 1996, no. 51

[5] A. Leulmi, B. Merikhi, D. Benterki, “Study of a Logarithmic Barrier Approach for Linear Semidefinite Programming”, Journal of Siberian Federal University. Mathematics $\$ Physics, 11:3 (2018), 1–13 | MR

[6] L. Menniche, Dj. Benterki, “A logarithmic barrier approach for linear programming”, Journal of Computational and Applied Mathematics, 312 (2017), 267–275 | DOI | MR | Zbl

[7] R.T. Rockafellar, Convex analysis, Princeton University Press, New Jerzy, 1970 | MR | Zbl

[8] G. Savard, Introduction au méthodes de point inté rieur, Extrait denotes, Département de Mathématiques et Génie Industriel, Ecole Polytechnique de Montréal, Fevrier, 2001

[9] H. Wolkowicz, G.P.H. Styan, “Bounds for eigenvalues using traces”, Linear Algebra and Appl., 29 (1980), 471–506 | DOI | MR | Zbl