Symmetries of differential ideals and differential equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 185-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with differential rings and partial differential equations with coefficients in some algebra. We introduce symmetries and the conservation laws to the differential ideal of an arbitrary differential ring. We prove that a set of symmetries of an ideal forms a Lie ring and give a precise criterion when a differentiation is a symmetry of an ideal. These concepts are applied to partial differential equations.
Keywords: differential rings, symmetry, partial differential equations.
@article{JSFU_2019_12_2_a4,
     author = {Oleg V. Kaptsov},
     title = {Symmetries of differential ideals and differential equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {185--190},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a4/}
}
TY  - JOUR
AU  - Oleg V. Kaptsov
TI  - Symmetries of differential ideals and differential equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 185
EP  - 190
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a4/
LA  - en
ID  - JSFU_2019_12_2_a4
ER  - 
%0 Journal Article
%A Oleg V. Kaptsov
%T Symmetries of differential ideals and differential equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 185-190
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a4/
%G en
%F JSFU_2019_12_2_a4
Oleg V. Kaptsov. Symmetries of differential ideals and differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 185-190. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a4/

[1] S. Lie, Theory of Transformation Groups I: General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation, Springer-Verlag, Berlin–Heidelberg, 2015 | MR | Zbl

[2] L.V. Ovsyannikov, Group Analysis of Differential Equations, English transl., ed. W. F. Ames, Academic Press, New York, 1982 | MR | Zbl

[3] N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Boston, 1985 | MR | Zbl

[4] V.K Andreev, O.V. Kaptsov V. V. Pukhnachev, A.A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics, Springer, Netherlands, 2010 | MR

[5] P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, NY, 1986 | MR | Zbl

[6] G. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, NY, 1989 | MR | Zbl

[7] E. Noether, “Invariante Variationsprobleme”, Nachr Konig, Gesell Wissen, Gottingen, Math.-Phys. Kl., 1918, 235–257 | Zbl

[8] I. Kaplansky, Lie Algebras and Locally Compact Groups, University Chicago Press, 1971 | MR | Zbl

[9] E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, NY, 1973 | MR | Zbl

[10] N. H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, v. I, Symmetries, Exact Solutions, and Conservation Laws, CRC Press Published, 1993 | MR