Solution of non-stationary motion of binary mixture by Laplace transformation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 240-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper is estimated a special solution for solving thermal diffusion equations, that describe motion of binary mixture in a flat layer. If Reynolds number is small, these equations are reduced to some easier inverse boundary problems. For solving these problems are used Laplace transformations. Temperatures are setted on the walls and velocity field is found. Analytical solution for stationary mode and numerical results for non-stationary regime are presented and is found, when boundary conditions stabilize with increasing time, then all velocity components and temperature go to stationary ones.
Keywords: Reynolds number, binary mixture and non-stationary flow.
Mots-clés : thermal diffusion equations
@article{JSFU_2019_12_2_a10,
     author = {Nemat B. Darabi},
     title = {Solution of non-stationary motion of binary mixture by {Laplace} transformation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {240--248},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a10/}
}
TY  - JOUR
AU  - Nemat B. Darabi
TI  - Solution of non-stationary motion of binary mixture by Laplace transformation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 240
EP  - 248
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a10/
LA  - en
ID  - JSFU_2019_12_2_a10
ER  - 
%0 Journal Article
%A Nemat B. Darabi
%T Solution of non-stationary motion of binary mixture by Laplace transformation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 240-248
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a10/
%G en
%F JSFU_2019_12_2_a10
Nemat B. Darabi. Solution of non-stationary motion of binary mixture by Laplace transformation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 240-248. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a10/

[1] A.D. Polyanin, A.M. Kutepov, A.V. Vyazmin, D.A. Kazenin, Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Topics in Chemical Engineering, 14, Taylor Francis, London, 2001

[2] V.K. Andreev, Y.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachev, Mathematical models of convection, Walter de Gruyter, Berlin–Boston, 2012 | MR

[3] K. Hiemenz, “The boundary layer on a submerged straight circular cylinder in the uniform liquid flow”, Dinglers Polytech Journal, 326 (1911), 321–440

[4] S.N. Aristov, D.V. Knyazev, A.D. Polyanin, “Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables”, Theoretical Foundations of Chemical Engineering, 5 (2009), 547–566 (in Russian)

[5] J. F. Brady, A. Acrivos, “Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier-Stokes equations with reverse flow”, Journal of Fluid Mechanics, 112 (1981), 127–150 | DOI | MR | Zbl

[6] R. Diabouchinsky, “Quelques Considerations Sur les Mouvements Plans Rotationnels d 'un Liquide”, C.R. Acad. Sci., 179 (1924), 1133–1136

[7] A.G. Petrov, “Exact solution of the Navier-Stokes equations in a fluid layer between the moving parallel plates”, Journal of Applied Mechanics and Technical Physics, 53 (2012), 642–646 | DOI | MR | Zbl

[8] A.G. Petrov, “Construction of solutions of the Navier-Stokes equations for the fluid layer between the moving parallel plates at low and moderate Reynolds numbers”, Journal of Applied Mechanics and Technical Physics, 54 (2013), 51–56 | MR | Zbl

[9] V.K. Andreev, N.L. Sobachkina, Movement of binary mixtures in flat and cylindrical domains, Siberian Federal University, Krasnoyarsk, 2012

[10] A.I. Prilepko, D.G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marsel Dekker, Inc., New-York, 1999 | MR

[11] S.I. Kabanikhin, Inverse and Ill-Posed problems, Siberian Scientific Publishing House, Novosibirsk, 2009 (in Russian)

[12] V.K. Andreev, “Unsteady 2D Motions a Viscous Fluid Described by Partially Invariant Solutions to the Navier–Stokes Equations”, Journal of Siberian Federal University, 8:2 (2015), 140–147 | DOI | MR

[13] M. A. Lavrent'ev, B.V. Shabat, Methods of theory of functions of complex variables, Nauka, M., 1973 (in Russian)