Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_2_a10, author = {Nemat B. Darabi}, title = {Solution of non-stationary motion of binary mixture by {Laplace} transformation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {240--248}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a10/} }
TY - JOUR AU - Nemat B. Darabi TI - Solution of non-stationary motion of binary mixture by Laplace transformation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 240 EP - 248 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a10/ LA - en ID - JSFU_2019_12_2_a10 ER -
%0 Journal Article %A Nemat B. Darabi %T Solution of non-stationary motion of binary mixture by Laplace transformation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 240-248 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a10/ %G en %F JSFU_2019_12_2_a10
Nemat B. Darabi. Solution of non-stationary motion of binary mixture by Laplace transformation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 240-248. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a10/
[1] A.D. Polyanin, A.M. Kutepov, A.V. Vyazmin, D.A. Kazenin, Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Topics in Chemical Engineering, 14, Taylor Francis, London, 2001
[2] V.K. Andreev, Y.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachev, Mathematical models of convection, Walter de Gruyter, Berlin–Boston, 2012 | MR
[3] K. Hiemenz, “The boundary layer on a submerged straight circular cylinder in the uniform liquid flow”, Dinglers Polytech Journal, 326 (1911), 321–440
[4] S.N. Aristov, D.V. Knyazev, A.D. Polyanin, “Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables”, Theoretical Foundations of Chemical Engineering, 5 (2009), 547–566 (in Russian)
[5] J. F. Brady, A. Acrivos, “Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier-Stokes equations with reverse flow”, Journal of Fluid Mechanics, 112 (1981), 127–150 | DOI | MR | Zbl
[6] R. Diabouchinsky, “Quelques Considerations Sur les Mouvements Plans Rotationnels d 'un Liquide”, C.R. Acad. Sci., 179 (1924), 1133–1136
[7] A.G. Petrov, “Exact solution of the Navier-Stokes equations in a fluid layer between the moving parallel plates”, Journal of Applied Mechanics and Technical Physics, 53 (2012), 642–646 | DOI | MR | Zbl
[8] A.G. Petrov, “Construction of solutions of the Navier-Stokes equations for the fluid layer between the moving parallel plates at low and moderate Reynolds numbers”, Journal of Applied Mechanics and Technical Physics, 54 (2013), 51–56 | MR | Zbl
[9] V.K. Andreev, N.L. Sobachkina, Movement of binary mixtures in flat and cylindrical domains, Siberian Federal University, Krasnoyarsk, 2012
[10] A.I. Prilepko, D.G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marsel Dekker, Inc., New-York, 1999 | MR
[11] S.I. Kabanikhin, Inverse and Ill-Posed problems, Siberian Scientific Publishing House, Novosibirsk, 2009 (in Russian)
[12] V.K. Andreev, “Unsteady 2D Motions a Viscous Fluid Described by Partially Invariant Solutions to the Navier–Stokes Equations”, Journal of Siberian Federal University, 8:2 (2015), 140–147 | DOI | MR
[13] M. A. Lavrent'ev, B.V. Shabat, Methods of theory of functions of complex variables, Nauka, M., 1973 (in Russian)