Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_1_a6, author = {Le Anh Nhat}, title = {Pseudospectral methods for nonlinear pendulum equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {79--84}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a6/} }
TY - JOUR AU - Le Anh Nhat TI - Pseudospectral methods for nonlinear pendulum equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 79 EP - 84 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a6/ LA - en ID - JSFU_2019_12_1_a6 ER -
Le Anh Nhat. Pseudospectral methods for nonlinear pendulum equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 79-84. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a6/
[1] A. Belendez, E. Arribas, “Approximate solutions for the nonlinear pendulum equation using a rational harmonic representation”, Computers $\$ Mathematics with Applications, 64:9 (2012), 1602–1611 | DOI | MR | Zbl
[2] G. Moshe, The Chaotic Pendulum, World Scientific Publishing Co. Pte. Ltd, 2010 | Zbl
[3] G.L. Baker, J.A. Blackburn, The Pendulum — a case study in physics, Oxford University Press Inc., New York, 2005 | MR | Zbl
[4] J.C. Mason, D.C. Handscomb, Chebyshev Polynomials, CRC Press LLC, 2003 | MR | Zbl
[5] W.S. Don, A. Solomonoff, “Accuracy and speed in computing the Chebyshev collocation devivative”, SIAM Juarnal of Scientific Computing, 16:6 (1991), 1253–1268 | DOI | MR