Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_1_a5, author = {Aziza Bachmar and Souraya Boutechebak and Touffik Serrar}, title = {Variational analysis of a dynamic electroviscoelastic problem with friction}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {68--78}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a5/} }
TY - JOUR AU - Aziza Bachmar AU - Souraya Boutechebak AU - Touffik Serrar TI - Variational analysis of a dynamic electroviscoelastic problem with friction JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 68 EP - 78 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a5/ LA - en ID - JSFU_2019_12_1_a5 ER -
%0 Journal Article %A Aziza Bachmar %A Souraya Boutechebak %A Touffik Serrar %T Variational analysis of a dynamic electroviscoelastic problem with friction %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 68-78 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a5/ %G en %F JSFU_2019_12_1_a5
Aziza Bachmar; Souraya Boutechebak; Touffik Serrar. Variational analysis of a dynamic electroviscoelastic problem with friction. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 68-78. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a5/
[1] V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984 | MR | Zbl
[2] R.C. Batra, J.S. Yang, “Saint Venant's principle in linear piezoelectricity”, Journal of Elasticity, 38 (1995), 209–218 | DOI | MR | Zbl
[3] M. Barboteu, J.R. Fernández, Y. Ouafik, “Numerical analysis of a frictionless viscoelastic piezoelectric contact problem”, M2AN Math. Model. Numer. Anal. (to appear)
[4] H. Brézis, Analyse Fonctionnelle, Théorie et Application, Masson, Paris, 1987
[5] O. Chau, “On a class of second order evolution inéquality and application”, Int. J. of Appl. Math. and Mech., 4:1 (2008), 24–48 | MR
[6] G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1988 | MR
[7] W. Han, M. Sofonea, K. Kazmi, “Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials”, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3915–3926 | DOI | MR | Zbl
[8] J.L. Lions, Quelques Méthodes de Résolution des Problémes Aux Limites non Linéaires, Dunod et Gauthier-Villars, Paris, 1969 | MR
[9] R.D. Mindlin, “Polarisation gradient in elastic dielectrics”, Int. J. Solids Structures, 4 (1968), 637–663 | DOI
[10] R.D. Mindlin, “Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films”, Int. J. Solids, 4 (1969), 1197–1213 | DOI
[11] R.D. Mindlin, “Elasticity, Piezoelectricity and Cristal lattice dynamics”, J. of Elasticity, 4 (1972), 217–280 | DOI
[12] M. Rochdi, M. Shillor, M. Sofonea, “A quasistatic contact problem with directional friction and damped response”, Applicable Analysis, 68 (1998), 409–422 | DOI | MR | Zbl
[13] L. Selmani, N. Bensebaa, “An Electro-viscoelastic Contact Problem with Adhesion and Damage”, Rend. Sem. Mat. Univ. Pol. Torino, 66:2 (2008), 151–171 | MR | Zbl
[14] M. Sofonea, E.-H. Essoufi, “Quasistatic frictional contact of a viscoelastic piezoelectric body”, Adv. Math. Sci. Appl., 14:1 (2004), 25–40 | MR
[15] M. Selmani, L. Selmani, Frictional contact problem for elastic-viscoplastic materials with thermal effect, Berlin–Heidelberg, 2013 | MR | Zbl
[16] M. Sofonea, M. Shillor, “Variational analysis of quasistatic viscoplastic contact problems with friction”, Communications in Applied Analysis, 5 (2001), 135–151 | MR | Zbl