Variational analysis of a dynamic electroviscoelastic problem with friction
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 68-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamic contact problem is considered in the paper. The material behavior is described by electro-visco-elastic constitutive law with piezoelectric effects. The body is in contact with a rigide obstacle. Contact is described with the Signorini condition, a version of Coulomb's law of dry friction, and with a regularized electrical conductivity condition. A variational formulation of the problem is derived. Under the assumption that coefficient of friction is small, existence and uniqueness of a weak solution of the problem is proved. The proof is based on evolutionary variational inequalities and fixed points of operators.
Keywords: piezoelectric, frictional contact, visco-elastic, fixed point, dynamic process, Сoulomb's law of friction, variational inequality.
@article{JSFU_2019_12_1_a5,
     author = {Aziza Bachmar and Souraya Boutechebak and Touffik Serrar},
     title = {Variational analysis of a dynamic electroviscoelastic problem with friction},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {68--78},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a5/}
}
TY  - JOUR
AU  - Aziza Bachmar
AU  - Souraya Boutechebak
AU  - Touffik Serrar
TI  - Variational analysis of a dynamic electroviscoelastic problem with friction
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 68
EP  - 78
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a5/
LA  - en
ID  - JSFU_2019_12_1_a5
ER  - 
%0 Journal Article
%A Aziza Bachmar
%A Souraya Boutechebak
%A Touffik Serrar
%T Variational analysis of a dynamic electroviscoelastic problem with friction
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 68-78
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a5/
%G en
%F JSFU_2019_12_1_a5
Aziza Bachmar; Souraya Boutechebak; Touffik Serrar. Variational analysis of a dynamic electroviscoelastic problem with friction. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 68-78. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a5/

[1] V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984 | MR | Zbl

[2] R.C. Batra, J.S. Yang, “Saint Venant's principle in linear piezoelectricity”, Journal of Elasticity, 38 (1995), 209–218 | DOI | MR | Zbl

[3] M. Barboteu, J.R. Fernández, Y. Ouafik, “Numerical analysis of a frictionless viscoelastic piezoelectric contact problem”, M2AN Math. Model. Numer. Anal. (to appear)

[4] H. Brézis, Analyse Fonctionnelle, Théorie et Application, Masson, Paris, 1987

[5] O. Chau, “On a class of second order evolution inéquality and application”, Int. J. of Appl. Math. and Mech., 4:1 (2008), 24–48 | MR

[6] G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1988 | MR

[7] W. Han, M. Sofonea, K. Kazmi, “Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials”, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3915–3926 | DOI | MR | Zbl

[8] J.L. Lions, Quelques Méthodes de Résolution des Problémes Aux Limites non Linéaires, Dunod et Gauthier-Villars, Paris, 1969 | MR

[9] R.D. Mindlin, “Polarisation gradient in elastic dielectrics”, Int. J. Solids Structures, 4 (1968), 637–663 | DOI

[10] R.D. Mindlin, “Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films”, Int. J. Solids, 4 (1969), 1197–1213 | DOI

[11] R.D. Mindlin, “Elasticity, Piezoelectricity and Cristal lattice dynamics”, J. of Elasticity, 4 (1972), 217–280 | DOI

[12] M. Rochdi, M. Shillor, M. Sofonea, “A quasistatic contact problem with directional friction and damped response”, Applicable Analysis, 68 (1998), 409–422 | DOI | MR | Zbl

[13] L. Selmani, N. Bensebaa, “An Electro-viscoelastic Contact Problem with Adhesion and Damage”, Rend. Sem. Mat. Univ. Pol. Torino, 66:2 (2008), 151–171 | MR | Zbl

[14] M. Sofonea, E.-H. Essoufi, “Quasistatic frictional contact of a viscoelastic piezoelectric body”, Adv. Math. Sci. Appl., 14:1 (2004), 25–40 | MR

[15] M. Selmani, L. Selmani, Frictional contact problem for elastic-viscoplastic materials with thermal effect, Berlin–Heidelberg, 2013 | MR | Zbl

[16] M. Sofonea, M. Shillor, “Variational analysis of quasistatic viscoplastic contact problems with friction”, Communications in Applied Analysis, 5 (2001), 135–151 | MR | Zbl