On a transversality condition for one variation problem with moving boundary
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 125-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an algorithm to obtain a transversality condition for one variation problem with a moving boundary when a functional contains derivatives of order $n$ of functions of one variable. A mathematical justification of the this approach is given.
Keywords: curvature, moving boundary, functional, transversality condition.
Mots-clés : variation
@article{JSFU_2019_12_1_a12,
     author = {Sergey O. Gladkov},
     title = {On a transversality condition for one variation problem with moving boundary},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {125--129},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a12/}
}
TY  - JOUR
AU  - Sergey O. Gladkov
TI  - On a transversality condition for one variation problem with moving boundary
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 125
EP  - 129
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a12/
LA  - en
ID  - JSFU_2019_12_1_a12
ER  - 
%0 Journal Article
%A Sergey O. Gladkov
%T On a transversality condition for one variation problem with moving boundary
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 125-129
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a12/
%G en
%F JSFU_2019_12_1_a12
Sergey O. Gladkov. On a transversality condition for one variation problem with moving boundary. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 125-129. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a12/

[1] L.D. Landau, E.M. Lifshitz, Theoretical Physics, v. 1, Mechanics, Butterworth-Heinemann, Boston, 1976 | MR

[2] L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, v. 2, 4th ed., Butterworth-Heinemann, 1975 | MR

[3] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon Press, Oxford, 1987 | MR | Zbl

[4] L.D. Landau, E.M. Lifshitz, Theory of Elasticity, v. 7, 3rd ed., Butterworth-Heinemann, 1986 | MR

[5] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, v. 8, 1st ed., Pergamon Press, 1960 | MR | Zbl

[6] S.O. Gladkov, “A Contribution to the Computation of the Young Modulus”, Journal of Engineering Physics and Thermophysics, 76:5 (2003), 1126–1130 | DOI

[7] S.O. Gladkov, “To the theory of nonlinear dynamic equations for the long elastic rod in viscous media”, International Journal of Mathematical Models and Methods in Applied Science, 9 (2015), 166–170

[8] L. Elsgolts, Differential equations and the calculus of variations, Mir, M., 1977 | MR

[9] L.C. Young, Lectures on the calculus of variations and optimal control theory, W.B. Saunders Company, Philadelphia–London–Toronto, 1969 | MR | Zbl

[10] A.J. Mc Connell, Application of tensor analysis, Dover Publications, Inc., New York, 1957 | MR

[11] S.O. Gladkov, “On a trajectory of a body entering liquid under an arbitrary angle”, Memoirs of the Faculty of Physics of MSU, 4 (2016), 164002, 5 pp. (in Russian)