One proof of the fundamental theorem of algebra (of polynomials)
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 109-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One proof of the fundamental theorem of algebra (of polynomials) is given, based on the theorem on the number of zeros of an entire function.
Keywords: the fundamental theorem of algebra, zeros of entire functions.
@article{JSFU_2019_12_1_a10,
     author = {Olga V. Khodos},
     title = {One proof of the fundamental theorem of algebra (of polynomials)},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {109--111},
     year = {2019},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a10/}
}
TY  - JOUR
AU  - Olga V. Khodos
TI  - One proof of the fundamental theorem of algebra (of polynomials)
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 109
EP  - 111
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a10/
LA  - en
ID  - JSFU_2019_12_1_a10
ER  - 
%0 Journal Article
%A Olga V. Khodos
%T One proof of the fundamental theorem of algebra (of polynomials)
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 109-111
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a10/
%G en
%F JSFU_2019_12_1_a10
Olga V. Khodos. One proof of the fundamental theorem of algebra (of polynomials). Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 109-111. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a10/

[1] A.G. Kurosh, Higher Algebra, Mir, M., 1975 | MR

[2] B.L. Van der Waerden, Algebra, Springer-Verlag, Berlin–Heidelberg–New-York, 1971 | MR | Zbl

[3] A.M. Kytmanov, O.V. Khodos, “On localization of zeros of an entire function of finite order of growth”, Journal Complex Analysis and Operator Theory, 11:2 (2017), 393–416 | DOI | MR | Zbl

[4] A.I. Markushevich, The theory of analytic functions, v. 2, Nauka, M., 1968 (in Russian) | MR

[5] E.C. Titchmarsh, The theory of functions, Oxford Univ. Press, Oxford, 1939 | MR | Zbl