Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 738-752.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the asymptotic behavior of a coupled system involving of an incompressible Bingham fluid and the equation of the heat energy, in a three-dimensional bounded domain with Tresca free boundary friction conditions. First we prove the existence and uniqueness results for the weak solution. Second, we show the strong convergence of the velocity and the temperature. Then a specific Reynolds limit equation is obtained, and the uniqueness of the limit velocity and temperature are proved.
Keywords: asymptotic approach, boundary conditions, Coupled problem, Fourier law, non-isothermal Bingham fluid, Tresca law, Reynolds equation.
@article{JSFU_2018_11_6_a9,
     author = {Abdelkader Saadallah and Hamid Benseridi and Mourad Dilmi},
     title = {Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {738--752},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a9/}
}
TY  - JOUR
AU  - Abdelkader Saadallah
AU  - Hamid Benseridi
AU  - Mourad Dilmi
TI  - Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 738
EP  - 752
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a9/
LA  - en
ID  - JSFU_2018_11_6_a9
ER  - 
%0 Journal Article
%A Abdelkader Saadallah
%A Hamid Benseridi
%A Mourad Dilmi
%T Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 738-752
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a9/
%G en
%F JSFU_2018_11_6_a9
Abdelkader Saadallah; Hamid Benseridi; Mourad Dilmi. Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 738-752. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a9/

[1] D. Benterki, H. Benseridi, M. Dilmi, “Asymptotic Study of a Boundary Value Problem Governed by the Elasticity Operator with Nonlinear Term”, Adv. Appl. Math. Mech., 6 (2014), 191–202 | DOI | MR | Zbl

[2] M. Boukrouche, F. Saidi, “Non-isothermal lubrication problem with Tresca fluid–solid interface law. Part II, Asymptotic behavior of weak solutions”, Nonlinear Analysis: Real World Applications, 9:4 (2008), 1680–1701 | DOI | MR | Zbl

[3] M. Boukrouche, G. Łukaszewicz, “On a lubrication problem with Fourier and Tresca boundary conditions”, Math. Mod. and Meth. in Applied Sciences, 14:6 (2004), 913–941 | DOI | MR | Zbl

[4] M. Boukrouche, R. Elmir, “Asymptotic analysis of non-Newtonian fluid in a thin domain with Tresca law”, Nonlinear analysis, Theory Methods and Applications, 59 (2004), 85–105 | DOI | MR | Zbl

[5] R. Bunoui, S. Kesavan, “Asymptotic behaviour of a Bingham fluid in thin layers”, J. Math. Anal. Appl., 293:2 (2004), 405–418 | DOI | MR

[6] E.J. Dean, R. Glowinski, G. Guidoboni, “On the numerical simulation of bingham visco-plastic flow: Old and new results”, Journal of Non-Newtonian Fluid Mechanics, 142 (2007), 36–62 | DOI | MR | Zbl

[7] J.C. De Los Reyes, S. Gonzalez, “Path following methods for steady laminar Bingham flow in cylindrical pipes”, M2AN Math. Model. Numer. Anal., 43:1 (2009), 81–117 | DOI | MR | Zbl

[8] M. Dilmi, H. Benseridi, A. Saadallah, “Asymptotic Analysis of a Bingham Fluid in a Thin Domain with Fourier and Tresca Boundary Conditions”, Adv. Appl. Math. Mech., 6 (2014), 797–810 | DOI | MR

[9] G. Duvant, J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR

[10] R. Elmir, Comportement asymptotique d'un fluide de Bingham dans un filmi mince avec des conditions non-linéaires sur le bord, Thèse de Doctorat, Chapitre 4, Université Saint Etienne, France, 2006

[11] M. Fuchs, J.F. Grotowski, J. Reuling, “On variational model for quasi-static Bingham fluids”, Math. Meth. and Meth. in Applied Sciences, 19 (1996), 991–1015 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] M. Fuchs, G. Seregin, “Regularity results for the quasi-static Bingham variational inequality in dimensions two and three”, Mathematische Zeitschrift, 227 (1998), 525–541 | DOI | MR | Zbl

[13] R. Glowinski, J.L. Lions, R. Tremolieres, Analyse numerique des inequations variationnelles, v. 1, Methodes Mathematiques de l'Informatique, 5, Theorie generale premieres applications, Dunod, Paris, 1976 | MR | Zbl