Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_6_a9, author = {Abdelkader Saadallah and Hamid Benseridi and Mourad Dilmi}, title = {Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {738--752}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a9/} }
TY - JOUR AU - Abdelkader Saadallah AU - Hamid Benseridi AU - Mourad Dilmi TI - Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 738 EP - 752 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a9/ LA - en ID - JSFU_2018_11_6_a9 ER -
%0 Journal Article %A Abdelkader Saadallah %A Hamid Benseridi %A Mourad Dilmi %T Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 738-752 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a9/ %G en %F JSFU_2018_11_6_a9
Abdelkader Saadallah; Hamid Benseridi; Mourad Dilmi. Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 738-752. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a9/
[1] D. Benterki, H. Benseridi, M. Dilmi, “Asymptotic Study of a Boundary Value Problem Governed by the Elasticity Operator with Nonlinear Term”, Adv. Appl. Math. Mech., 6 (2014), 191–202 | DOI | MR | Zbl
[2] M. Boukrouche, F. Saidi, “Non-isothermal lubrication problem with Tresca fluid–solid interface law. Part II, Asymptotic behavior of weak solutions”, Nonlinear Analysis: Real World Applications, 9:4 (2008), 1680–1701 | DOI | MR | Zbl
[3] M. Boukrouche, G. Łukaszewicz, “On a lubrication problem with Fourier and Tresca boundary conditions”, Math. Mod. and Meth. in Applied Sciences, 14:6 (2004), 913–941 | DOI | MR | Zbl
[4] M. Boukrouche, R. Elmir, “Asymptotic analysis of non-Newtonian fluid in a thin domain with Tresca law”, Nonlinear analysis, Theory Methods and Applications, 59 (2004), 85–105 | DOI | MR | Zbl
[5] R. Bunoui, S. Kesavan, “Asymptotic behaviour of a Bingham fluid in thin layers”, J. Math. Anal. Appl., 293:2 (2004), 405–418 | DOI | MR
[6] E.J. Dean, R. Glowinski, G. Guidoboni, “On the numerical simulation of bingham visco-plastic flow: Old and new results”, Journal of Non-Newtonian Fluid Mechanics, 142 (2007), 36–62 | DOI | MR | Zbl
[7] J.C. De Los Reyes, S. Gonzalez, “Path following methods for steady laminar Bingham flow in cylindrical pipes”, M2AN Math. Model. Numer. Anal., 43:1 (2009), 81–117 | DOI | MR | Zbl
[8] M. Dilmi, H. Benseridi, A. Saadallah, “Asymptotic Analysis of a Bingham Fluid in a Thin Domain with Fourier and Tresca Boundary Conditions”, Adv. Appl. Math. Mech., 6 (2014), 797–810 | DOI | MR
[9] G. Duvant, J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR
[10] R. Elmir, Comportement asymptotique d'un fluide de Bingham dans un filmi mince avec des conditions non-linéaires sur le bord, Thèse de Doctorat, Chapitre 4, Université Saint Etienne, France, 2006
[11] M. Fuchs, J.F. Grotowski, J. Reuling, “On variational model for quasi-static Bingham fluids”, Math. Meth. and Meth. in Applied Sciences, 19 (1996), 991–1015 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[12] M. Fuchs, G. Seregin, “Regularity results for the quasi-static Bingham variational inequality in dimensions two and three”, Mathematische Zeitschrift, 227 (1998), 525–541 | DOI | MR | Zbl
[13] R. Glowinski, J.L. Lions, R. Tremolieres, Analyse numerique des inequations variationnelles, v. 1, Methodes Mathematiques de l'Informatique, 5, Theorie generale premieres applications, Dunod, Paris, 1976 | MR | Zbl