Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_6_a7, author = {Eugenia G. Rodikova}, title = {Coefficient multipliers for the {Privalov} class in a disk}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {723--732}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a7/} }
TY - JOUR AU - Eugenia G. Rodikova TI - Coefficient multipliers for the Privalov class in a disk JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 723 EP - 732 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a7/ LA - en ID - JSFU_2018_11_6_a7 ER -
Eugenia G. Rodikova. Coefficient multipliers for the Privalov class in a disk. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 723-732. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a7/
[1] O. Blasco, M. Pavlovic, “Coefficient multipliers on Banach spaces of analytic”, Revista Matemática Iberoamericana, 27:2 (2011), 415–447 | DOI | MR | Zbl
[2] V.I. Gavrilov, A.V. Subbotin, D.A. Efimov, Boundary properties of analytic functions (further contribution), Publishing House of the Moscow University, M., 2012 (in Russian) | MR
[3] P.L. Duren, Theory of $H^p$ spaces, Pure and Appl. Math., 38, Academic Press, NY, 1970 | MR
[4] M.A. Evgrafov, “The behavior of a power series for functions of the class $H_{\delta}$ on the boundary of the circle of convergence”, Izv. AN SSSR. Ser. Mat., 16:5 (1952), 481–492 (in Russian) | MR | Zbl
[5] M. Jevtic, M. Pavlovic, “Coefficient multipliers on spaces of analytic fuctions”, Acta Sci. Math (Szeged), 64:3–4 (1998), 541–545 | MR
[6] R. Mestrovic, A.V. Subbotin, “Multipliers and linear functionals for Privalov spaces of holomorphic functions in the disc”, Doklady Akademii Nauk, 365:4 (1999), 452–454 (in Russian) | MR | Zbl
[7] M. Pavlovic, Introduction to function spaces in a disk, Matematicki Institut SANU, Beograd, 2004 | MR
[8] I.I. Privalov, Boundary properties of single-valued analytic functions, Izd. Moscow Gos. Univ., M., 1941 (in Russian) | MR
[9] I.I. Privalov, Boundary properties of analytic functions, GITTL, M.–L., 1950 (in Russian) | MR
[10] E.G. Rodikova, “On estimates of the expansion coefficients for certain classes of functions analytic in a disk”, Proceedings of the VI Petrozavodsk International Conference «Complex Analysis and Applications», PetrGU, Petrozavodsk, 2012, 64–69 (in Russian)
[11] E.G. Rodikova, Factorization, characterization of zero sets, and questions of interpolation in weighted spaces of analytic functions, PhD thesis phis.-math. Sciences: 01.01.01, Bryansk, 2014 (in Russian) | MR
[12] W. Rudin, Functional analysis, McGraw Hill, New York, 1973 | MR | Zbl
[13] R.F. Shamoyan, “On the coefficient multipliers of Bloch and Hardy Spaces in a polydisk”, Sib. Math. J., 43:1 (2002), 169–182 | DOI | MR | Zbl
[14] F.A. Shamoyan, E.N. Shubabko, “A Class of Functions Holomorphic in the Disk”, Journal of Mathematical Sciences, 120:5 (2004), 1784–1790 | DOI | MR
[15] F.A. Shamoyan, E.N. Shubabko, Introduction to the theory of weight $L^p$-classes of meromorphic functions, Group of Companies «Desyatochka», Bryansk, 2009 (in Russian)
[16] S.V. Shvedenko, “Hardy classes and the spaces of analytic functions associated with them in the unit disc, polydisc, and ball”, Itogi Nauki i Tekhniki. Ser. Mat. Anal., 23, 1985, 3–124 (in Russian) | MR | Zbl
[17] S.V. Shvedenko, “On the growth rate and Taylor coefficients of functions of the area Nevanlinna $\mathbf{N}$ class”, Izv. vuzov. Mat., 1986, no. 6, 40–43 (in Russian) | MR | Zbl
[18] M. Stoll, “Mean growth and Taylor coefficients of some topological algebras of analytic functions”, Ann. Polon. Math., 35:2 (1977), 139–158 | DOI | MR | Zbl
[19] N. Yanagihara, “Multipliers and linear functionals for the class $N^+$”, Transactions of the Amer. Math. Soc., 180 (1973), 449–461 | MR | Zbl
[20] N. Yanagihara, “Mean growth and Taylor coefficients of some classes of functions”, Ann. Polon. Math., 30 (1974), 37–48 | DOI | MR | Zbl