The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 712-722 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the dependence of the properties of the generating function of the solution of the Cauchy problem on the properties of the generating function of the initial data for a difference equation with constant coefficients in a rational point cone. Conditions are found under which the generating functions of the solution remain in the same classes as the generating functions of the initial data.
Keywords: multidimensional difference equations, Cauchy problem, hierarchy of generating function
Mots-clés : Hadamard composition.
@article{JSFU_2018_11_6_a6,
     author = {Evgeny K. Leinartas and Tatiana I. Yakovleva},
     title = {The {Cauchy} problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {712--722},
     year = {2018},
     volume = {11},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a6/}
}
TY  - JOUR
AU  - Evgeny K. Leinartas
AU  - Tatiana I. Yakovleva
TI  - The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 712
EP  - 722
VL  - 11
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a6/
LA  - en
ID  - JSFU_2018_11_6_a6
ER  - 
%0 Journal Article
%A Evgeny K. Leinartas
%A Tatiana I. Yakovleva
%T The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 712-722
%V 11
%N 6
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a6/
%G en
%F JSFU_2018_11_6_a6
Evgeny K. Leinartas; Tatiana I. Yakovleva. The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 712-722. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a6/

[1] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl

[2] T.I. Yakovleva, “Well-posedness of the Cauchy problem for multidimensional difference equations in rational cones”, Siberian Mathematical Journal, 58:2 (2017), 363–372 | DOI | MR | Zbl

[3] R.P. Stanley, Enumerative Combinatorics, Mir, M., 1990 (Russian) | MR

[4] R.P. Stanley, Enumerative Combinatorics. Trees, generating functions, symmetric functions, Mir, M., 2009 (in Russian) | MR

[5] E.K. Leinartas, T.I. Nekrasova, “Constant coefficient linear difference equations on the rational cones of the integer lattice”, Siberian Mathematical Journal, 57:2 (2016), 98–112 | MR | Zbl

[6] L. Bieberbach, Analytic continuation, Nauka, M., 1967 (in Russian) | MR

[7] E.K. Leinartas, “Hadamard's theorem on the multiplication of singularities in $\mathbb C^n$”, Sib. Mat. Zh., 27:3 (1986), 209–212 (in Russian) | MR

[8] E.K. Leinartas, M.S. Rogozina, “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Siberian Mathematical Journal, 56:1 (2015), 111–121 | DOI | MR | Zbl

[9] A.O. Gelfond, The calculus of finite differences, KomKniga, M., 2006 (in Russian) | MR

[10] O.A. Shishkina, “Bernoulli Polynomials in Several Variables and Summation of Monomials over Lattice Points of a Rational Parallelotope”, Izvestiya Irkutsk Gos. Univ., 16 (2016), 89–101 (in Russian) | Zbl

[11] O.A. Shishkina, “Multidimensional Analog of the Bernoulli polynomials and its Properties”, Journal of Siberian Federal University, Mathematics $\$ Physics, 9:3 (2016), 384–392 | DOI

[12] L. Lipshitz, “D-Finite power series”, Journal of Algebra, 122 (1989), 353–373 | DOI | MR | Zbl

[13] M.S. Apanovich, E.K. Leinartas, “Correctness of a Two-dimensional Cauchy Problem for a Polynomial Difference Operator with Constant Coefficients”, Journal of Siberian Federal University. Mathematics $\$ Physics, 10:2 (2017), 199–205 | DOI | MR

[14] R.W.K. Odoni, “On the norms of algebraic integers”, Matematica, 22 (1975), 71–80 | MR | Zbl

[15] D.Ẑ. Djokoviĉ, “A properties of the Taylor expansion of rational function in several variables”, J. of Math. Anal. and Appl., 66 (1978), 679–685 | DOI | MR | Zbl

[16] J.H. Poincare, New Methods of Celestial Mechanics, v. 1, Nauka, M., 1971 (in Russian) | MR

[17] A.K. Tsikh, “Conditions for absolute convergence of the Taylor coefficient series of a meromorphic function of two variables”, Math. Sb., 182:11 (1991), 1588–1612 | MR | Zbl

[18] B.V. Shabat, An Introduction to Complex Analysis, 1969 (in Russian) | MR

[19] J.W.S. Cassels, An Introduction to the Geometry of Numbers, Mir, M., 1965 (in Russian) | MR | Zbl

[20] D. Yu. Pochekutov, “Diagonals of the Laurent series of rational functions”, Sib. Math. J., 50 (2009), 1081–1090 | DOI | MR

[21] T.I. Nekrasova, “On the hierarchy of generating functions for solutions of multidimensional difference equations”, Izvestiya Irkutsk Gos. Univ., 9 (2014), 91–103 (in Russian)