Existence and uniqueness of the solution for Volterra--Fredholm integro-differential equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 692-701.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, modified Adomian decomposition method is successfully applies to find the approximate solutions of Volterra–Fredholm integro-differential equations. Moreover, we prove the existence and uniqueness results and convergence of the solutions. Finally, an example is included to demonstrate the validity and applicability of the proposed technique.
Keywords: Modified Adomian decomposition method, Volterra–Fredholm integro-differential equation, existence and uniqueness results, approximate solution.
@article{JSFU_2018_11_6_a4,
     author = {Ahmed A. Hamoud and Kirtiwant P. Ghadle},
     title = {Existence and uniqueness of the solution for {Volterra--Fredholm} integro-differential equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {692--701},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a4/}
}
TY  - JOUR
AU  - Ahmed A. Hamoud
AU  - Kirtiwant P. Ghadle
TI  - Existence and uniqueness of the solution for Volterra--Fredholm integro-differential equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 692
EP  - 701
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a4/
LA  - en
ID  - JSFU_2018_11_6_a4
ER  - 
%0 Journal Article
%A Ahmed A. Hamoud
%A Kirtiwant P. Ghadle
%T Existence and uniqueness of the solution for Volterra--Fredholm integro-differential equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 692-701
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a4/
%G en
%F JSFU_2018_11_6_a4
Ahmed A. Hamoud; Kirtiwant P. Ghadle. Existence and uniqueness of the solution for Volterra--Fredholm integro-differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 692-701. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a4/

[1] K. Abbaoui, Y. Cherruault, “Convergence of Adomian's method applied to nonlinear equations”, Math. Comput. Modelling, 20:9 (1994), 69–73 | DOI | MR | Zbl

[2] S. Abbasbandy, S. Elyas, “Application of variational iteration method for system of nonlinear Volterra integro-differential equations”, Math. Comput. Appl., 2:14 (2009), 147–158 | MR | Zbl

[3] G. Adomian, “A review of the decomposition method in applied mathematics”, J. Math. Anal. Appl., 135:2 (1988), 501–544 | DOI | MR | Zbl

[4] S. Alao, F. Akinboro1, F. Akinpelu, R. Oderinu, “Numerical solution of integro-differential equation using Adomian decomposition and variational iteration methods”, IOSR Journal of Mathematics, 10:4 (2014), 18–22 | DOI

[5] M. Araghi, S. Behzadi, “Solving nonlinear Volterra-Fredholm integro-differential equations using the modified Adomian decomposition method”, Comput. Methods Appl. Math., 9 (2009), 321–331 | DOI | MR | Zbl

[6] S. Behzadi, S. Abbasbandy, T. Allahviranloo, A. Yildirim, “Application of homotopy analysis method for solving a class of nonlinear Volterra-Fredholm integro-differential equations”, J. Appl. Anal. Comput., 2:2 (2012), 127–136 | MR | Zbl

[7] S. El-Sayed, D. Kaya, S. Zarea, “The decomposition method applied to solve high-order linear Volterra-Fredholm integro-differential equations”, Int. J. Nonlinear Sci. Numer. Simul., 5:2 (2004), 105–112 | DOI | MR | Zbl

[8] A.A. Hamoud, A.D. Azeez, K.P. Ghadle, “A study of some iterative methods for solving fuzzy Volterra-Fredholm integral equations”, Indonesian J. Elec. Eng. $\$ Comp. Sci., 11:3 (2018), 1228–1235 | MR

[9] A.A. Hamoud, K.P. Ghadle, “The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations”, Korean J. Math., 25:3 (2017), 323–334 | MR

[10] A.A. Hamoud, K.P. Ghadle, “Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations”, Indian J. Math., 60:3 (2018) (to appear) | MR

[11] A.A. Hamoud, K.P. Ghadle, “Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equations”, J. Indian Math. Soc., 85:1–2, 52–69. (2018) | MR

[12] A.A. Hamoud, K.P. Ghadle, M. SH.Bani Issa, Giniswamy, “Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations”, Int. J. Appl. Math., 31:3 (2018), 333–348 | MR

[13] A.A. Hamoud, K.P. Ghadle, “The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques”, Probl. Anal. Issues Anal., 7(25):1 (2018), 41–58 | DOI | MR

[14] R. Mittal, R. Nigam, “Solution of fractional integro-differential equations by Adomian decomposition method”, Int. J. Appl. Math. Mech., 4:2 (2008), 87–94

[15] Y. Salih, S. Mehmet, “The approximate solution of higher order linear Volterra-Fredholm integro-differential equations in term of Taylor polynomials”, Appl. Math. Comput., 112 (2000), 291–308 | MR | Zbl

[16] A.M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications, Springer Heidelberg, Dordrecht–London–New York, 2011 | MR | Zbl

[17] A.M. Wazwaz, “A new algorithm for calculating Adomian polynomials for nonlinear operators”, Appl. Math. Comput., 111 (2000), 53–69 | MR | Zbl

[18] A.M. Wazwaz, “The variational iteration method for solving linear and non-linear Volterra integral and integro-differential equations”, Int. J. Comput. Math., 87:5 (2010), 1131–1141 | DOI | MR | Zbl

[19] A.M. Wazwaz, “A reliable modification of Adomian decomposition method”, Appl. Math. Comput., 102 (1999), 77–86 | MR | Zbl

[20] C. Yang, J. Hou, “Numerical solution of integro-differential equations of fractional order by Laplace decomposition method”, Wseas Trans.Math., 12:12 (2013), 1173–1183