Decomposition of functions of finite analytical complexity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 680-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

Functions of two variables can be obtained from functions of one variable by substitutions and additions. Each composition scheme corresponds to a class of functions of two variables, such that they can be represented as a composition with this scheme. It was shown that each class consists of analytical solutions of a certain system of differential polynomials (equations of the class). The paper describes an algorithm for constructing a system of equations of the scheme and for obtaining function representation in the form of a composition with this scheme.
Keywords: representation of the functions.
Mots-clés : decomposition scheme
@article{JSFU_2018_11_6_a2,
     author = {Valery K. Beloshapka},
     title = {Decomposition of functions of finite analytical complexity},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {680--685},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a2/}
}
TY  - JOUR
AU  - Valery K. Beloshapka
TI  - Decomposition of functions of finite analytical complexity
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 680
EP  - 685
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a2/
LA  - en
ID  - JSFU_2018_11_6_a2
ER  - 
%0 Journal Article
%A Valery K. Beloshapka
%T Decomposition of functions of finite analytical complexity
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 680-685
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a2/
%G en
%F JSFU_2018_11_6_a2
Valery K. Beloshapka. Decomposition of functions of finite analytical complexity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 680-685. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a2/

[1] J. F. Ritt, Differential algebra, American mathematical society, 1950 | MR | Zbl

[2] I. Kaplansky, Introduction to differential algebra, Izd. Inostr. Lit., M., 1959 | MR

[3] V.K. Beloshapka, “Analytic complexity of functions of two variables”, Russian J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl