Decomposition of functions of finite analytical complexity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 680-685
Voir la notice de l'article provenant de la source Math-Net.Ru
Functions of two variables can be obtained from functions of one variable by substitutions and additions. Each composition scheme corresponds to a class of functions of two variables, such that they can be represented as a composition with this scheme. It was shown that each class consists of analytical solutions of a certain system of differential polynomials (equations of the class). The paper describes an algorithm for constructing a system of equations of the scheme and for obtaining function representation in the form of a composition with this scheme.
Keywords:
representation of the functions.
Mots-clés : decomposition scheme
Mots-clés : decomposition scheme
@article{JSFU_2018_11_6_a2,
author = {Valery K. Beloshapka},
title = {Decomposition of functions of finite analytical complexity},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {680--685},
publisher = {mathdoc},
volume = {11},
number = {6},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a2/}
}
TY - JOUR AU - Valery K. Beloshapka TI - Decomposition of functions of finite analytical complexity JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 680 EP - 685 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a2/ LA - en ID - JSFU_2018_11_6_a2 ER -
Valery K. Beloshapka. Decomposition of functions of finite analytical complexity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 680-685. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a2/