Construction of Szeg\H{o} and Poisson kernels in convex domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 792-795.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct Szegő and Poisson kernels in convex domains in $\mathbb{C}^n$ and study their properties.
Mots-clés : convex domain, Szegő and Poisson kernels.
@article{JSFU_2018_11_6_a14,
     author = {Simona G. Myslivets},
     title = {Construction of {Szeg\H{o}} and {Poisson} kernels in convex domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {792--795},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a14/}
}
TY  - JOUR
AU  - Simona G. Myslivets
TI  - Construction of Szeg\H{o} and Poisson kernels in convex domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 792
EP  - 795
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a14/
LA  - en
ID  - JSFU_2018_11_6_a14
ER  - 
%0 Journal Article
%A Simona G. Myslivets
%T Construction of Szeg\H{o} and Poisson kernels in convex domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 792-795
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a14/
%G en
%F JSFU_2018_11_6_a14
Simona G. Myslivets. Construction of Szeg\H{o} and Poisson kernels in convex domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 792-795. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a14/

[1] L. Bungart, “Boundary kernel functions for domains on complex manifolds”, Pac. J. of Math., 14:4 (1964), 1151–1164 | DOI | MR | Zbl

[2] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam–New York, 1989 | MR

[3] L.A. Aizenberg, A.P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Trans. Mathematical Monographs, American Mathematical Society, Providence, RI, 1983 | DOI | MR | Zbl

[4] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidian Spaces, Princeton Univ. Press, Princeton, 1975 | MR

[5] A.M. Kytmanov, The Bochner-Martinelli Integral and Its Applications, Birkhäuser, Basel–Boston–Berlin; Science, 1995 | MR | Zbl