Construction of Szegő and Poisson kernels in convex domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 792-795
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we construct Szegő and Poisson kernels in convex domains in $\mathbb{C}^n$ and study their properties.
Mots-clés :
convex domain, Szegő and Poisson kernels.
@article{JSFU_2018_11_6_a14,
author = {Simona G. Myslivets},
title = {Construction of {Szeg\H{o}} and {Poisson} kernels in convex domains},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {792--795},
year = {2018},
volume = {11},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a14/}
}
TY - JOUR AU - Simona G. Myslivets TI - Construction of Szegő and Poisson kernels in convex domains JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 792 EP - 795 VL - 11 IS - 6 UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a14/ LA - en ID - JSFU_2018_11_6_a14 ER -
Simona G. Myslivets. Construction of Szegő and Poisson kernels in convex domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 792-795. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a14/
[1] L. Bungart, “Boundary kernel functions for domains on complex manifolds”, Pac. J. of Math., 14:4 (1964), 1151–1164 | DOI | MR | Zbl
[2] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam–New York, 1989 | MR
[3] L.A. Aizenberg, A.P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Trans. Mathematical Monographs, American Mathematical Society, Providence, RI, 1983 | DOI | MR | Zbl
[4] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidian Spaces, Princeton Univ. Press, Princeton, 1975 | MR
[5] A.M. Kytmanov, The Bochner-Martinelli Integral and Its Applications, Birkhäuser, Basel–Boston–Berlin; Science, 1995 | MR | Zbl