Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 753-763.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hyperbolic integro–differential acoustic equation is considered. Direct problem is to find the acoustic pressure from the initial - boundary value problem for this equation with point source located on the boundary of the space domain. The inverse problem is studied. It consists in determining the one-dimensional kernel of the integral term using the solution of the direct problem at $ x = 0$, $ t > 0 $. Inverse problem is reduced to the system of integral equations for unknown functions. The principle of contraction mappings is applied to this system in the space of continuous functions with weighted norms. The global unique solvability of the inverse problem is proved.
Keywords: integrodifferential equation, inverse problem, Dirac delta function, weight function.
Mots-clés : kernel
@article{JSFU_2018_11_6_a10,
     author = {Jurabek Sh. Safarov},
     title = {Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {753--763},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a10/}
}
TY  - JOUR
AU  - Jurabek Sh. Safarov
TI  - Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 753
EP  - 763
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a10/
LA  - en
ID  - JSFU_2018_11_6_a10
ER  - 
%0 Journal Article
%A Jurabek Sh. Safarov
%T Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 753-763
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a10/
%G en
%F JSFU_2018_11_6_a10
Jurabek Sh. Safarov. Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 753-763. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a10/

[1] J. Janno, L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. methods in Appl. Sciences, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] V.G. Romanov, “Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation”, J. Appl. Industr. Math., 6:3 (2012), 360–370 | DOI | MR | Zbl

[3] D.K. Durdiev, J.D. Totieva, “The problem on definition multidimensional kernel of viscoelasticity equations”, Vladikavkaz mat. zh., 17:4 (2015), 18–43 (in Russian) | MR

[4] D.K. Durdiev, J.Sh. Safarov, “Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain”, Math. Notes, 97:6 (2015), 867–877 | DOI | MR | Zbl

[5] J. Sh.Safarov, “One-dimensional inverse problem for the viscoelasticity equation in a bounded domain”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 17:3 (2015), 44–55 (in Russian) | Zbl

[6] J.Sh. Safarov, D.K. Durdiev, “Inverse problem for the integro-differential equation of acoustics”, Diff. equations, 54:1 (2018), 136–144 | MR | Zbl

[7] R. Courant, Equations with partial derivatives, Mir, M., 1964 (in Russian)

[8] D.K. Durdiev, “Global solvability of a single inverse problem for the integro-differential equation of electrodynamics”, Diff. equations, 44:7 (2008), 867–873 | MR | Zbl