Mots-clés : $A$-discriminant, logarithmic Gauss map.
@article{JSFU_2018_11_6_a1,
author = {Irina A. Antipova and Evgeny N. Mikhalkin and Avgust K. Tsikh},
title = {Singular points of complex algebraic hypersurfaces},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {670--679},
year = {2018},
volume = {11},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a1/}
}
TY - JOUR AU - Irina A. Antipova AU - Evgeny N. Mikhalkin AU - Avgust K. Tsikh TI - Singular points of complex algebraic hypersurfaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 670 EP - 679 VL - 11 IS - 6 UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a1/ LA - en ID - JSFU_2018_11_6_a1 ER -
%0 Journal Article %A Irina A. Antipova %A Evgeny N. Mikhalkin %A Avgust K. Tsikh %T Singular points of complex algebraic hypersurfaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 670-679 %V 11 %N 6 %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a1/ %G en %F JSFU_2018_11_6_a1
Irina A. Antipova; Evgeny N. Mikhalkin; Avgust K. Tsikh. Singular points of complex algebraic hypersurfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 670-679. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a1/
[1] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl
[2] Sb. Math., 209 (2018) | DOI | DOI | MR
[3] E.N. Mikhalkin, A.K. Tsikh, “Singular strata of cuspidal type for the classical discriminant”, Sb. Math., 206:2 (2015), 282–310 | DOI | MR | Zbl
[4] I.A. Antipova, A.K. Tsikh, “The discriminant locus of a sistem of $n$ Laurent polynomials in $n$ variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | MR | Zbl
[5] M.M. Kapranov, “A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290 (1991), 277–285 | DOI | MR | Zbl
[6] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math., 151:2 (2000), 309–326 | DOI | MR | Zbl