Singular points of complex algebraic hypersurfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 670-679.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a complex hypersurface $V$ given by an algebraic equation in $k$ unknowns, where the set $ A\subset {\mathbb Z}^k $ of monomial exponents is fixed, and all the coefficients are variable. In other words, we consider a family of hypersurfaces in $ ({\mathbb C \setminus 0}) ^ {k} $ parametrized by its coefficients $a =(a_{\alpha})_{\alpha \in A} \in {\mathbb C} ^{A} $. We prove that when $A$ generates the lattice $\mathbb Z^k$ as a group, then over the set of regular points $a$ in the $A$-discriminantal set, the singular points of $V$ admit a rational expression in $a$.
Keywords: singular point
Mots-clés : $A$-discriminant, logarithmic Gauss map.
@article{JSFU_2018_11_6_a1,
     author = {Irina A. Antipova and Evgeny N. Mikhalkin and Avgust K. Tsikh},
     title = {Singular points of complex algebraic hypersurfaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {670--679},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a1/}
}
TY  - JOUR
AU  - Irina A. Antipova
AU  - Evgeny N. Mikhalkin
AU  - Avgust K. Tsikh
TI  - Singular points of complex algebraic hypersurfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 670
EP  - 679
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a1/
LA  - en
ID  - JSFU_2018_11_6_a1
ER  - 
%0 Journal Article
%A Irina A. Antipova
%A Evgeny N. Mikhalkin
%A Avgust K. Tsikh
%T Singular points of complex algebraic hypersurfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 670-679
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a1/
%G en
%F JSFU_2018_11_6_a1
Irina A. Antipova; Evgeny N. Mikhalkin; Avgust K. Tsikh. Singular points of complex algebraic hypersurfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 670-679. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a1/

[1] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[2] Sb. Math., 209 (2018) | DOI | DOI | MR

[3] E.N. Mikhalkin, A.K. Tsikh, “Singular strata of cuspidal type for the classical discriminant”, Sb. Math., 206:2 (2015), 282–310 | DOI | MR | Zbl

[4] I.A. Antipova, A.K. Tsikh, “The discriminant locus of a sistem of $n$ Laurent polynomials in $n$ variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | MR | Zbl

[5] M.M. Kapranov, “A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290 (1991), 277–285 | DOI | MR | Zbl

[6] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math., 151:2 (2000), 309–326 | DOI | MR | Zbl