Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_5_a9, author = {Maria A. Medvedeva and Pavel V. Prudnikov}, title = {Studies of non-equilibrium relaxation {Heisenberg} model with long-range correlations defects}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {622--626}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a9/} }
TY - JOUR AU - Maria A. Medvedeva AU - Pavel V. Prudnikov TI - Studies of non-equilibrium relaxation Heisenberg model with long-range correlations defects JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 622 EP - 626 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a9/ LA - en ID - JSFU_2018_11_5_a9 ER -
%0 Journal Article %A Maria A. Medvedeva %A Pavel V. Prudnikov %T Studies of non-equilibrium relaxation Heisenberg model with long-range correlations defects %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 622-626 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a9/ %G en %F JSFU_2018_11_5_a9
Maria A. Medvedeva; Pavel V. Prudnikov. Studies of non-equilibrium relaxation Heisenberg model with long-range correlations defects. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 622-626. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a9/
[1] R. Folk, Yu. Holovatch, T. Yavors'kii, “Critical exponents of a three-dimensional weakly diluted quenched Ising model”, Phys. Usp., 46:6 (2003), 169–191 | DOI
[2] A. Weinrib, B. I. Halperin, “Critical phenomena in systems with long-range-correlated quenched disorder”, Phys. Rev. B, 27 (1983), 413–428 | DOI | MR
[3] H.K. Janssen, B. Schaub, B. Schmittmann, “New universal short-time scaling behaviour of critical relaxation processes”, Z. Phys. B, 73 (1989), 539–549 | DOI
[4] R. da Silva, N.A. Alves, J.R. Drugowich de Felécio, “Mixed initial conditions to estimate the dynamic critical exponent in short-time Monte Carlo simulation”, Phys. Lett. A, 298 (2002), 325–329 | DOI | Zbl
[5] P.V. Prudnikov, M.A. Medvedeva, “Nonequilibrium critical behavior of highly disordered magnets with long-range defect correlation”, Low Temp. Phys., 40 (2014), 443–452 | DOI
[6] P.V. Prudnikov, M.A. Medvedeva, “Non-equilibrium critical relaxation of the 3D Heisenberg magnets with long-range correlated disorder”, Progr. Theor. Phys., 127 (2012), 369–382 | DOI
[7] V.V. Prudnikov, P.V. Prudnikov, A.A. Fedorenko, “Field-theory approach to critical behavior of systems with long-range correlated defects”, Phys. Rev. B, 62 (2000), 8777–8786 | DOI | MR
[8] K. Chen, A.M. Ferrenberg, D.P. Landau, “Static critical behavior of three-dimensional classical Heisenberg models: A high-resolution Monte Carlo study”, Phys. Rev. B, 48 (1993), 3249–3256 | DOI