On divisibility of some sums of binomial coefficients arising from collection formulas
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 603-614.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we establish a series of identities for sums of binomial coefficients to prove their divisibility by prime $n$. These sums arise from exponents of commutators in collection formula for $(xy)^n$ with some restrictions on variables of the commutators.
Keywords: divisibility, collection formulas.
Mots-clés : sums of binomial coefficients
@article{JSFU_2018_11_5_a7,
     author = {Vladimir M. Leontiev},
     title = {On divisibility of some sums of binomial coefficients arising from collection formulas},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {603--614},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a7/}
}
TY  - JOUR
AU  - Vladimir M. Leontiev
TI  - On divisibility of some sums of binomial coefficients arising from collection formulas
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 603
EP  - 614
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a7/
LA  - en
ID  - JSFU_2018_11_5_a7
ER  - 
%0 Journal Article
%A Vladimir M. Leontiev
%T On divisibility of some sums of binomial coefficients arising from collection formulas
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 603-614
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a7/
%G en
%F JSFU_2018_11_5_a7
Vladimir M. Leontiev. On divisibility of some sums of binomial coefficients arising from collection formulas. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 603-614. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a7/

[1] P. Hall, “A contribution to the theory of groups of prime-power order”, Proc. London Math. Soc., 36:1 (1932), 29–95 | DOI | MR

[2] E. Krause, “On the collection process”, Proc. Amer. Math. Soc., 15:3 (1964), 497–504 | DOI | MR | Zbl

[3] M. Hall, The Theory of Groups, The Macmillan Company, New York, 1959 | MR | Zbl

[4] A.I. Skopin, “The Jacobi identity and P. Hall's collection formula for transmetabelian groups of two types”, Zap. Nauchn. Sem. Leningrad. Otd. Mat. Inst. Steklov. (LOMI), 175, 1989, 106–112 (in Russian) | MR

[5] The Kourovka notebook, 18th Edition., Novosibirsk, 2014

[6] V.M. Leontiev, P. Hall's collection formulas with some restrictions on commutator subgroup, August Möbius Contest, 2016 (in Russian) www.moebiuscontest.ru/files/2016/leontiev.pdf

[7] N. Ya.Vilenkin, Combinatorics, Academic Press, New York–London, 1971 | MR | Zbl

[8] O.V. Kuzmin, “Pascal triangle and Pascal pyramid: some properties and generalizations”, Soros Educational Journal, 6:5 (2000), 101–109