Minimal polynomials in finite semifields
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 588-596
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the classical notion of a minimal polynomial and apply it to investigations in finite semifields. A proper finite semifield has non-associative multiplication, that leads to a number of anomalous properties of one-side-ordered minimal polynomials. The interrelation between the minimal polynomial of an element and the minimal polynomial of its matrix from the spread set is described and illustrated by some semifields of orders 16, 32 and 64.
Keywords:
semifield, right-ordered degree, right-ordered minimal polynomial.
@article{JSFU_2018_11_5_a5,
author = {Olga V. Kravtsova},
title = {Minimal polynomials in finite semifields},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {588--596},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a5/}
}
Olga V. Kravtsova. Minimal polynomials in finite semifields. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 588-596. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a5/