On the Fredholm property for the steady Navier--Stokes equations in weighted H\"older spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 659-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the steady Navier–Stokes equations induce a Fredholm non-linear map on the scale of Hölder spaces weighted at the infinity.
Keywords: steady Navier–Stokes Equations, non-linear Fredholm operators, weighted Hölder spaces.
@article{JSFU_2018_11_5_a14,
     author = {Andrei A. Parfenov and Alexander A. Shlapunov},
     title = {On the {Fredholm} property for the steady {Navier--Stokes} equations in weighted {H\"older} spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {659--662},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a14/}
}
TY  - JOUR
AU  - Andrei A. Parfenov
AU  - Alexander A. Shlapunov
TI  - On the Fredholm property for the steady Navier--Stokes equations in weighted H\"older spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 659
EP  - 662
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a14/
LA  - en
ID  - JSFU_2018_11_5_a14
ER  - 
%0 Journal Article
%A Andrei A. Parfenov
%A Alexander A. Shlapunov
%T On the Fredholm property for the steady Navier--Stokes equations in weighted H\"older spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 659-662
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a14/
%G en
%F JSFU_2018_11_5_a14
Andrei A. Parfenov; Alexander A. Shlapunov. On the Fredholm property for the steady Navier--Stokes equations in weighted H\"older spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 659-662. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a14/

[1] A. Bertozzi, A. Majda, Vorticity and Incompressible Flows, Cambridge University Press, Cambridge, 2002 | MR

[2] A. Shlapunov, N. Tarkhanov, “An Open Mapping Theorem for the Navier-Stokes Equations”, Advances and Applications in Fluid Mechanics, 21:2 (2018), 127–246 | DOI

[3] S. Smale, “An infnite dimensional version of Sard's theorem”, Amer. J. Math., 87:4 (1965), 861–866 | DOI | MR | Zbl

[4] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd ed., SIAM, Philadelphia, 1995 | MR | Zbl