On the Fredholm property for the steady Navier–Stokes equations in weighted Hölder spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 659-662
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the steady Navier–Stokes equations induce a Fredholm non-linear map on the scale of Hölder spaces weighted at the infinity.
Keywords:
steady Navier–Stokes Equations, non-linear Fredholm operators
Mots-clés : weighted Hölder spaces.
Mots-clés : weighted Hölder spaces.
@article{JSFU_2018_11_5_a14,
author = {Andrei A. Parfenov and Alexander A. Shlapunov},
title = {On the {Fredholm} property for the steady {Navier{\textendash}Stokes} equations in weighted {H\"older} spaces},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {659--662},
year = {2018},
volume = {11},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a14/}
}
TY - JOUR AU - Andrei A. Parfenov AU - Alexander A. Shlapunov TI - On the Fredholm property for the steady Navier–Stokes equations in weighted Hölder spaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 659 EP - 662 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a14/ LA - en ID - JSFU_2018_11_5_a14 ER -
%0 Journal Article %A Andrei A. Parfenov %A Alexander A. Shlapunov %T On the Fredholm property for the steady Navier–Stokes equations in weighted Hölder spaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 659-662 %V 11 %N 5 %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a14/ %G en %F JSFU_2018_11_5_a14
Andrei A. Parfenov; Alexander A. Shlapunov. On the Fredholm property for the steady Navier–Stokes equations in weighted Hölder spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 659-662. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a14/
[1] A. Bertozzi, A. Majda, Vorticity and Incompressible Flows, Cambridge University Press, Cambridge, 2002 | MR
[2] A. Shlapunov, N. Tarkhanov, “An Open Mapping Theorem for the Navier-Stokes Equations”, Advances and Applications in Fluid Mechanics, 21:2 (2018), 127–246 | DOI
[3] S. Smale, “An infnite dimensional version of Sard's theorem”, Amer. J. Math., 87:4 (1965), 861–866 | DOI | MR | Zbl
[4] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd ed., SIAM, Philadelphia, 1995 | MR | Zbl