Intermediate systems and higher-order differential constraints
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 550-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing solutions of nonlinear partial differential equations with two independent variables is proposed. The method is based on the search for so-called intermediate systems, each solution of which satisfies the initial equation. The main attention is paid to a second order nonlinear wave equation. We give examples of intermediate systems and corresponding solutions.
Keywords: differential constraints, defining equations, invariant manifolds.
@article{JSFU_2018_11_5_a1,
     author = {Oleg V. Kaptsov},
     title = {Intermediate systems and higher-order differential constraints},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {550--560},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a1/}
}
TY  - JOUR
AU  - Oleg V. Kaptsov
TI  - Intermediate systems and higher-order differential constraints
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 550
EP  - 560
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a1/
LA  - en
ID  - JSFU_2018_11_5_a1
ER  - 
%0 Journal Article
%A Oleg V. Kaptsov
%T Intermediate systems and higher-order differential constraints
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 550-560
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a1/
%G en
%F JSFU_2018_11_5_a1
Oleg V. Kaptsov. Intermediate systems and higher-order differential constraints. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 550-560. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a1/

[1] A.F. Sidorov, V.P. Shapeev, N.N. Yanenko, The method of differential constraints and its applications in gas dynamics, Nauka, Novosibirsk, 1984 (in Russian) | MR

[2] V.I. Smimov, Course of high mathematics, Pergamon Press, NY, 1964 | MR

[3] M.E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second order”, Annales de la Faculté de Toulouse, 2 série, v. 1, 1899 | MR

[4] A.V. Zhiber, R.D. Murtazina, I.T. Habibullin, A.B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Ufimsk. Mat. Zh., 4:3, 17–85 (2012) (in Russian) | DOI | MR | Zbl

[5] O.V. Kaptsov, Integration Methods for Partial Differential Equations, Fizmatlit, M., 2009 (in Russian)

[6] O.V. Kaptsov, “On the Goursat classification problem”, Programming and Computer Software, 32:2 (2012), 68–71 | MR

[7] V.K. Andreev, O.V. Kaptsov, V.V. Pukhnachev, A.A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics, Springer, Netherlands, 2010 | MR

[8] I. S. Krasilshchik, A. M. Vinogradov (eds.), Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, AMS, 1999 | MR | Zbl

[9] P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, NY, 1993 | MR | Zbl

[10] N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Kluwer AP, Dordrecht, 1985 | MR | Zbl

[11] A.V. Zhiber, A.B. Shabat, “Klein-Gordon equations with a nontrivial group”, Sov. Phys. Dokl., 24:8 (1979), 607–609 | MR

[12] O.V. Kaptsov, “Algebraic and geometric structures of analytic partial differential equations”, TMP, 189:2 (2016), 1592–1608 | MR | Zbl

[13] V.A. Galaktionov, S.R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman Hall, London, 2007 | MR | Zbl

[14] A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, CRC Press, 2004 | MR | Zbl