Weighted fractional neutral functional differential equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 535-549.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a weighted neutral functional differential equation of fractional order $0\alpha 1$, with nonzero initial values, infinite delay, and the standard Riemann–Liouville fractional derivative. By using a variety of tools of fractional calculus including the Schauder fixed point theorem and the Banach fixed point theorem, we verify the existence, uniqueness and continuous dependence of solution of weighted neutral problem.
Keywords: fractional functional differential equations, fractional derivative and fractional integral, existence and continuous dependence, fixed point theorem.
@article{JSFU_2018_11_5_a0,
     author = {Mohammed S. Abdo and Satish K. Panchal},
     title = {Weighted fractional neutral functional differential equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {535--549},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/}
}
TY  - JOUR
AU  - Mohammed S. Abdo
AU  - Satish K. Panchal
TI  - Weighted fractional neutral functional differential equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 535
EP  - 549
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/
LA  - en
ID  - JSFU_2018_11_5_a0
ER  - 
%0 Journal Article
%A Mohammed S. Abdo
%A Satish K. Panchal
%T Weighted fractional neutral functional differential equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 535-549
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/
%G en
%F JSFU_2018_11_5_a0
Mohammed S. Abdo; Satish K. Panchal. Weighted fractional neutral functional differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 535-549. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/

[1] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in fractional differential equations, Springer Science, Business Media, 2012 | MR | Zbl

[2] M.S. Abdo, S.K. Panchal, “Effect of perturbation in the solution of fractional neutral functional differential equations”, J. KSIAM, 22: 1 (2018), 63–74 | MR | Zbl

[3] M.S. Abdo, S.K. Panchal, “Existence and continuous dependence for fractional neutral functional differential equations”, J. Mathematical Model., 5:2 (2017), 153–170 | MR | Zbl

[4] R. Agarwal, Y. Zhou, Y. He, “Existence of fractional neutral functional differential equations”, Compu. Math. Applic., 59:3 (2010), 1095–1100 | DOI | MR | Zbl

[5] O.A. Arino, T.A. Burton, J.R. Haddock, “Periodic solutions to functional differential equations”, Proceedings Roy. Soc. Edinb. Sec. A Math., 101:3–4 (1985), 253–271 | DOI | MR | Zbl

[6] A. Belarbi, M. Benchohra, A. Ouahab, “Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces”, Applicable Anal., 85:12 (2006), 1459 | DOI | MR | Zbl

[7] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, “Existence results for fractional order functional differential equations with infinite delay”, J. Math. Anal. Appl., 338:2 (2008), 1340–1350 | DOI | MR | Zbl

[8] J. Cao, H. Chen, W. Yang, “Existence and continuous dependence of mild solutions for fractional neutral abstract evolution equations”, Adv. Differ. Equ., 2015:1 (2015), 1–6 | DOI | MR

[9] D. Delboso, L. Rodino, “Existence and uniqueness for a nonlinear fractional differential equation”, J. Math. Anal. Appl., 204 (1996), 609–625 | DOI | MR

[10] J. Deng, Q. Hailiang, “New uniqueness results of solutions for fractional differential equations with infinite delay”, Compu. Math. Appl., 60:8 (2010), 2253–2259 | DOI | MR | Zbl

[11] K. Diethelm, N.J. Ford, “Analysis of fractional differential equations”, J. Math. Anal. Appl., 265 (2002), 229–248 | DOI | MR | Zbl

[12] K. Diethelm, G. Walz, “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl

[13] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004, Springer, Berlin, 2010 | DOI | MR | Zbl

[14] Q. Dong, “Existence and continuous dependence for weighted fractional differential equations with infinite delay”, Adv. in Differe. Equ., 2014:1 (2014), 1–13 | DOI | MR

[15] K.M. Furati, N.E. Tatar, “An existence result for a nonlocal fractional differential problem”, J. Fract. Calc., 26 (2004), 4351 | MR

[16] L. Gaul, P. Klein, S. Kempfle, “Damping description involving fractional operators”, Mech. Sys. Sign. Processing, 5 (1991), 81–88 | DOI

[17] W.G. Glockle, T.F. Nonnenmacher, “A fractional calculus approach of self-similar protein dynamics”, Biophys. J., 68 (1995), 46–53 | DOI

[18] J. Hale, J. Kato, “Phase space for retarded equations with infinite delay”, Funkcial. Ekvac., 21 (1978), 11–41 | MR | Zbl

[19] Y. Hino, S. Murakami, T. Naito, Functional differential equations with infinite delay, Lecture Notes in Math., 1473, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[20] A.A. Kilbas, S.A. Marzan, “Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions”, Differ. Uravn., 41:1 (2005), 82–86 | MR | Zbl

[21] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[22] V. Lakshmikantham, S. Leela, J.V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009 | Zbl

[23] V. Lakshmikantham, “Theory of fractional functional differential equations”, Nonlinear Anal. Th. Meth. Appl., 69:10 (2008), 3337–3343 | DOI | MR | Zbl

[24] F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmacher, “Relaxation in filled polymers: A fractional calculus approach”, J. Chem. Phys., 103 (1995), 7180–7186 | DOI

[25] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993 | MR | Zbl

[26] S.M. Momani, S.B. Hadid, Z.M. Alawenh, “Some analytical properties of solutions of differential equations of noninteger order”, Int. J. Math. Sci., 2004 (2004), 697–701 | DOI | MR | Zbl

[27] S.M. Momani, S.B. Hadid, “Some comparison results for integro-fractional differential inequalities”, J. Fract. Calc., 24 (2003), 37–44 | MR | Zbl

[28] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl

[29] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl

[30] C. Yu, G. Gao, “Existence of fractional differential equations”, J. Math. Anal. Appl., 310 (2005), 26–29 | DOI | MR | Zbl