Weighted fractional neutral functional differential equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 535-549
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a weighted neutral functional differential equation of fractional order $0\alpha 1$, with nonzero initial values, infinite delay, and the standard Riemann–Liouville fractional derivative. By using a variety of tools of fractional calculus including the Schauder fixed point theorem and the Banach fixed point theorem, we verify the existence, uniqueness and continuous dependence of solution of weighted neutral problem.
Keywords:
fractional functional differential equations, fractional derivative and fractional integral, existence and continuous dependence, fixed point theorem.
@article{JSFU_2018_11_5_a0,
author = {Mohammed S. Abdo and Satish K. Panchal},
title = {Weighted fractional neutral functional differential equations},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {535--549},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/}
}
TY - JOUR AU - Mohammed S. Abdo AU - Satish K. Panchal TI - Weighted fractional neutral functional differential equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 535 EP - 549 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/ LA - en ID - JSFU_2018_11_5_a0 ER -
%0 Journal Article %A Mohammed S. Abdo %A Satish K. Panchal %T Weighted fractional neutral functional differential equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 535-549 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/ %G en %F JSFU_2018_11_5_a0
Mohammed S. Abdo; Satish K. Panchal. Weighted fractional neutral functional differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 535-549. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/