Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_5_a0, author = {Mohammed S. Abdo and Satish K. Panchal}, title = {Weighted fractional neutral functional differential equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {535--549}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/} }
TY - JOUR AU - Mohammed S. Abdo AU - Satish K. Panchal TI - Weighted fractional neutral functional differential equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 535 EP - 549 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/ LA - en ID - JSFU_2018_11_5_a0 ER -
%0 Journal Article %A Mohammed S. Abdo %A Satish K. Panchal %T Weighted fractional neutral functional differential equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 535-549 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/ %G en %F JSFU_2018_11_5_a0
Mohammed S. Abdo; Satish K. Panchal. Weighted fractional neutral functional differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 535-549. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a0/
[1] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in fractional differential equations, Springer Science, Business Media, 2012 | MR | Zbl
[2] M.S. Abdo, S.K. Panchal, “Effect of perturbation in the solution of fractional neutral functional differential equations”, J. KSIAM, 22: 1 (2018), 63–74 | MR | Zbl
[3] M.S. Abdo, S.K. Panchal, “Existence and continuous dependence for fractional neutral functional differential equations”, J. Mathematical Model., 5:2 (2017), 153–170 | MR | Zbl
[4] R. Agarwal, Y. Zhou, Y. He, “Existence of fractional neutral functional differential equations”, Compu. Math. Applic., 59:3 (2010), 1095–1100 | DOI | MR | Zbl
[5] O.A. Arino, T.A. Burton, J.R. Haddock, “Periodic solutions to functional differential equations”, Proceedings Roy. Soc. Edinb. Sec. A Math., 101:3–4 (1985), 253–271 | DOI | MR | Zbl
[6] A. Belarbi, M. Benchohra, A. Ouahab, “Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces”, Applicable Anal., 85:12 (2006), 1459 | DOI | MR | Zbl
[7] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, “Existence results for fractional order functional differential equations with infinite delay”, J. Math. Anal. Appl., 338:2 (2008), 1340–1350 | DOI | MR | Zbl
[8] J. Cao, H. Chen, W. Yang, “Existence and continuous dependence of mild solutions for fractional neutral abstract evolution equations”, Adv. Differ. Equ., 2015:1 (2015), 1–6 | DOI | MR
[9] D. Delboso, L. Rodino, “Existence and uniqueness for a nonlinear fractional differential equation”, J. Math. Anal. Appl., 204 (1996), 609–625 | DOI | MR
[10] J. Deng, Q. Hailiang, “New uniqueness results of solutions for fractional differential equations with infinite delay”, Compu. Math. Appl., 60:8 (2010), 2253–2259 | DOI | MR | Zbl
[11] K. Diethelm, N.J. Ford, “Analysis of fractional differential equations”, J. Math. Anal. Appl., 265 (2002), 229–248 | DOI | MR | Zbl
[12] K. Diethelm, G. Walz, “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl
[13] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004, Springer, Berlin, 2010 | DOI | MR | Zbl
[14] Q. Dong, “Existence and continuous dependence for weighted fractional differential equations with infinite delay”, Adv. in Differe. Equ., 2014:1 (2014), 1–13 | DOI | MR
[15] K.M. Furati, N.E. Tatar, “An existence result for a nonlocal fractional differential problem”, J. Fract. Calc., 26 (2004), 4351 | MR
[16] L. Gaul, P. Klein, S. Kempfle, “Damping description involving fractional operators”, Mech. Sys. Sign. Processing, 5 (1991), 81–88 | DOI
[17] W.G. Glockle, T.F. Nonnenmacher, “A fractional calculus approach of self-similar protein dynamics”, Biophys. J., 68 (1995), 46–53 | DOI
[18] J. Hale, J. Kato, “Phase space for retarded equations with infinite delay”, Funkcial. Ekvac., 21 (1978), 11–41 | MR | Zbl
[19] Y. Hino, S. Murakami, T. Naito, Functional differential equations with infinite delay, Lecture Notes in Math., 1473, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[20] A.A. Kilbas, S.A. Marzan, “Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions”, Differ. Uravn., 41:1 (2005), 82–86 | MR | Zbl
[21] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl
[22] V. Lakshmikantham, S. Leela, J.V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009 | Zbl
[23] V. Lakshmikantham, “Theory of fractional functional differential equations”, Nonlinear Anal. Th. Meth. Appl., 69:10 (2008), 3337–3343 | DOI | MR | Zbl
[24] F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmacher, “Relaxation in filled polymers: A fractional calculus approach”, J. Chem. Phys., 103 (1995), 7180–7186 | DOI
[25] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993 | MR | Zbl
[26] S.M. Momani, S.B. Hadid, Z.M. Alawenh, “Some analytical properties of solutions of differential equations of noninteger order”, Int. J. Math. Sci., 2004 (2004), 697–701 | DOI | MR | Zbl
[27] S.M. Momani, S.B. Hadid, “Some comparison results for integro-fractional differential inequalities”, J. Fract. Calc., 24 (2003), 37–44 | MR | Zbl
[28] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl
[29] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl
[30] C. Yu, G. Gao, “Existence of fractional differential equations”, J. Math. Anal. Appl., 310 (2005), 26–29 | DOI | MR | Zbl