A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 482-493
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a priori estimates of the solution in the uniform metric for a linear conjugate initial-boundary inverse problem describing the joint motion of a binary mixture and a viscous heat-conducting liquid in a plane channel. With their help, it is established that the solution of the non-stationary problem with time growth tends to a stationary solution according to the exponential law when the temperature on the channel walls stabilizes with time.
Keywords:
conjugate problem, inverse problem, a priori estimates, asymptotic behavior.
@article{JSFU_2018_11_4_a9,
author = {Victor K. Andreev and Marina V. Efimova},
title = {A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {482--493},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a9/}
}
TY - JOUR AU - Victor K. Andreev AU - Marina V. Efimova TI - A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 482 EP - 493 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a9/ LA - en ID - JSFU_2018_11_4_a9 ER -
%0 Journal Article %A Victor K. Andreev %A Marina V. Efimova %T A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 482-493 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a9/ %G en %F JSFU_2018_11_4_a9
Victor K. Andreev; Marina V. Efimova. A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 482-493. http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a9/