Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_4_a9, author = {Victor K. Andreev and Marina V. Efimova}, title = {A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {482--493}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a9/} }
TY - JOUR AU - Victor K. Andreev AU - Marina V. Efimova TI - A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 482 EP - 493 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a9/ LA - en ID - JSFU_2018_11_4_a9 ER -
%0 Journal Article %A Victor K. Andreev %A Marina V. Efimova %T A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 482-493 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a9/ %G en %F JSFU_2018_11_4_a9
Victor K. Andreev; Marina V. Efimova. A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 482-493. http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a9/
[1] A. Nepomnyashii, I. Simanovskii, J.-C. Legros, Interfacial Convection in Multilayer System, Springer, New York, 2006 | MR
[2] R. Narayanan, D. Schwabe, Interfacial Fluid Dynamics and Transport Processes, Springer-Verlag, Berlin, 2003 | MR | Zbl
[3] R. Kh.Zeytovnian, Convection in Fluids, Springer, Dordrecht, 2009 | MR
[4] V. K. Andreev, V. E. Zakhvataev, E. A. Ryabitskii, Thermocapillary Instability, Nauka, Novosibirsk, 2000 (in Russian) | MR
[5] V.K. Andreev, “On Inequalities of the Friedrichs type for Combined Domains”, Journal Siberian Federal University. Mathematics and Physics, 2:2 (2009), 146–157 (in Russian)
[6] A. D. Polianin, Handbook of linear partial differential equations for engineers and scientists, Boca Raton, London, 2002 | MR
[7] M. V. Efimova, “On one two-dimensional stationary flow of a binary mixture and viscous fluid in a plane layer”, Journal Siberian Federal University. Mathematics and Physics, 9:1 (2016), 30–36 | DOI