On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 416-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the following variable-coefficient parabolic equation in non-divergence form \begin{equation*} \partial _{t}u-\sum_{i=1}^{2}a_{i}(t,x_{1},x_{2})\partial_{ii}u+\sum_{i=1}^{2}b_{i}(t,x_{1},x_{2})\partial _{i}u+c(t,x_{1},x_{2})u=f(t,x_{1},x_{2}), \end{equation*} subject to Cauchy–Dirichlet boundary conditions. The problem is set in a non-regular domain of the form \begin{equation*} Q=\left\{ \left( t,x_{1}\right) \in\mathbb{R}^{2}:0, \varphi _{1}\left( t\right) {1}\varphi _{2}\left( t\right)\right\} \times \left] 0,b\right[, \end{equation*} where $ \varphi _{k},\; k=1,2$ are "smooth" functions. One of the main issues of this work is that the domain can possibly be non-regular, for instance, the singular case where $\varphi _{1}$ coincides with $\varphi_{2}$ for $t=0$ is allowed. The analysis is performed in the framework of anisotropic Sobolev spaces by using the domain decomposition method. This work is an extension of the constant-coefficients case studied in [15].
Keywords: non-regular domains
Mots-clés : parabolic equations, variable coefficients, anisotropic Sobolev spaces. DOI: 10.17516/1997-1397-2018-11-4-416-429..
@article{JSFU_2018_11_4_a2,
     author = {Ferroudj Boulkouane and Arezki Kheloufim},
     title = {On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {416--429},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a2/}
}
TY  - JOUR
AU  - Ferroudj Boulkouane
AU  - Arezki Kheloufim
TI  - On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 416
EP  - 429
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a2/
LA  - en
ID  - JSFU_2018_11_4_a2
ER  - 
%0 Journal Article
%A Ferroudj Boulkouane
%A Arezki Kheloufim
%T On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 416-429
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a2/
%G en
%F JSFU_2018_11_4_a2
Ferroudj Boulkouane; Arezki Kheloufim. On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 416-429. http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a2/

[1] B.-E. Ainseba, J.-P. Kernevez, R. Luce, “Application des sentinelles a l'identification des pollutions dans une rivière”, Mathematical modelling and Numerical analyses, 3:28 (1994), 297–312 | DOI | MR | Zbl

[2] Yu.A. Alkhutov, “$L_{p}$-Estimates of solutions of the Dirichlet problem for the heat equation in a ball”, J. Math. Sc., 142:3 (2007), 2021–2032 | DOI | MR | Zbl

[3] V.N. Aref'ev, L.A. Bagirov, “Asymptotic behavior of solutions to the Dirichlet problem for parabolic equations in domains with singularities”, Mathematical Notes, 5:1 (1996), 10–17 | DOI | MR

[4] E.A. Baderko, M.F. Cherepova, “The first boundary value problem for parabolic systems in plane domains with nonsmooth lateral boundaries”, Doklady Mathematics, 90:2 (2014), 573–575 | DOI | MR | Zbl

[5] R.M. Brown, W. Hu, G.M. Lieberman, “Weak solutions of parabolic equations in non-cylindrical domains”, Proc. Amer. Math. Soc., 125 (1997), 1785–1792 | DOI | MR | Zbl

[6] P. Cannarsa, G. Da Prato, J.-P. Zolèsio, “Evolution equations in non-cylindrical domains”, Atti Accad. Naz-lincei cl. Sci. Fis Mat. Natur., 88:8 (1990), 73–77 | MR

[7] M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Springer, Berlin, 1988 | MR | Zbl

[8] S.P. Degtyarev, “The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point”, Sbornik Math., 201:7 (2010), 999–1028 | DOI | MR | Zbl

[9] G. Fichera, “Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine”, Atti Acc. Naz. Lincei Mem. Ser. 5, 1956, no. 8, 1–30 | MR

[10] N. Garofalo, E. Lanconelli, “Wiener's criterion for parabolic equation with variable coefficients and its consequences”, Trans. Amer. Math. Soc., 308 (1988), 811–836 | MR | Zbl

[11] P. Grisvard, Elliptic Problems in Non-smooth Domains, Monographs and Studies in Mathematics, 24, Pitman, Boston, MA, 1985 | MR

[12] P. Grisvard, Singularities in Boundary Value Problems, RMA, 22, Masson, Paris, 1992 | MR | Zbl

[13] A.F. Guliyev, S.H. Ismayilova, “Mixed boundary-value problem for linear second-order nondivergent parabolic equations with discontinuous coefficients”, Ukrainian Mathematical Journal, 66:11 (2015), 1615–1638 | DOI | MR | Zbl

[14] Y. Jiongmin, “Weak solutions of second order parabolic equations in noncylindrical domains”, J. Partial Differential Equations, 2:2 (1989), 76–86 | MR | Zbl

[15] A. Kheloufi, R. Labbas, B.K. Sadallah, “On the resolution of a parabolic equation in a nonregular domain of $\mathbb{R}^{3}$”, Differ. Equat. Appl., 2:2 (2010), 251–263 | MR | Zbl

[16] A. Kheloufi, B.-K. Sadallah, “On the regularity of the heat equation solution in non-cylindrical domains: two approaches”, Appl. Math. Comput., 218 (2011), 1623–1633 | MR | Zbl

[17] A. Kheloufi, “Parabolic equations with Cauchy-Dirichlet boundary conditions in a non-regular domain of $\mathbb{R} ^{N+1}$”, Georgian Math. J., 21:2 (2014), 199–209 | DOI | MR | Zbl

[18] V.A. Kondrat'ev, Boundary problems for parabolic equations in closed regions, Am. Math. Soc., Providence. RI, 1966, 450–504 | Zbl

[19] V.A. Kondrat'ev, O.A. Oleinik, “Boundary-value problems for partial differential equations in nonsmooth domains”, Usp. Mat. Nauk, 38:2 (1983), 1–66 (in Russian) | MR

[20] V.A. Kozlov, “Coefficients in the asymptotic solutions of the Cauchy boundary-value parabolic problems in domains with a conical point”, Siberian Math. J., 29 (1988), 222–233 | DOI | MR | Zbl

[21] V.A. Kozlov, V.G. Maz'ya, “On singularities of a solution to the first boundaryvalue problem for the heat equation in domains with conical points, I”, Izv. Vyssh. Uchebn. Zaved., Mat., 2 (1987), 38–46 (in Russian) | Zbl

[22] V.A. Kozlov, V.G. Maz'ya, “On singularities of a solution to the first boundaryvalue problem for the heat equation in domains with conical points, II”, Izv. Vyssh. Uchebn. Zaved., Mat., 3 (1987), 37–44 (in Russian) | Zbl

[23] R. Labbas, M. Moussaoui, “On the resolution of the heat equation with discontinuous coefficients”, Semigroup Forum, 60 (2000), 187–201 | DOI | MR | Zbl

[24] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, A.M.S., Providence, Rhode Island, 1968 | MR | Zbl

[25] J.L. Lions, “Sur les problèmes mixtes pour certains systèmes parboliques dans des ouverts non cylindriques”, Ann. Inst. Fourier, 1957, 143–182 | DOI | MR | Zbl

[26] J. L. Lions, E. Magenes, Problèmes aux Limites Non Homogènes et Applications, v. 1, 2, Dunod, Paris, 1968 | MR | Zbl

[27] G. Lumer, R. Schnaubelt, “Time-dependent parabolic problems on non-cylindrical domains with inhomogeneous boundary conditions”, J. Evol. Equ., 1 (2001), 291–309 | DOI | MR | Zbl

[28] A. Maugeri, D.K. Palagachev, L.G. Softova, Elliptic and parabolic equations with discontinuous coefficients, Mathematical Research, 109, Wiley-VCH Verlag Berlin GmbH, Berlin, 2000 | MR | Zbl

[29] O.A. Oleinik, “A problem of Fichera”, Doklady Akad. Nauk SSSR, 157 (1964), 1297–1301 (in Russian) | MR

[30] B.K. Sadallah, “Etude d'un problème 2m-parabolique dans des domaines plan non rectangulaires”, Boll. Un. Mat. Ital., 2-B:5 (1983), 51–112 | MR | Zbl

[31] M.-E. Stoeckel, R. Mose, P. Ackerer, “Application of the sentinel method in a groundwater transport model”, Transactions on Ecology and the environment, 17 (1998), 673–680

[32] M. Taniguchi, “Initial boundary value problem for the wave equation in a domain with a corner”, Tokyo J. Math, 16:1 (1993), 61–98 | DOI | MR | Zbl