Antiplane strain of hardening elastoviscoplastic medium
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 399-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

Deforming of hardening elastoviscoplastic medium under the action of variable pressure gradient is considered in this paper. The displacement vector of material points has only vertical component. Mathematical model is based on the theory of large elastoplastic deformations. Differential transport equations of tensors of reversible and irreversible deformations are formulated. Irreversible deformations are split up into plastic and creep deformations. The solution is obtained with the use of analytical and numerical methods. The influence of hardening and viscosity parameters on medium deformation is analyzed.
Keywords: large strains, plasticity, creep, hardening.
@article{JSFU_2018_11_4_a0,
     author = {Aleksandr N. Prokudin and Sergey V. Firsov},
     title = {Antiplane strain of hardening elastoviscoplastic medium},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {399--410},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a0/}
}
TY  - JOUR
AU  - Aleksandr N. Prokudin
AU  - Sergey V. Firsov
TI  - Antiplane strain of hardening elastoviscoplastic medium
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 399
EP  - 410
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a0/
LA  - en
ID  - JSFU_2018_11_4_a0
ER  - 
%0 Journal Article
%A Aleksandr N. Prokudin
%A Sergey V. Firsov
%T Antiplane strain of hardening elastoviscoplastic medium
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 399-410
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a0/
%G en
%F JSFU_2018_11_4_a0
Aleksandr N. Prokudin; Sergey V. Firsov. Antiplane strain of hardening elastoviscoplastic medium. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 399-410. http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a0/

[1] A.A. Burenin, L.V. Kovtanyuk, Large irreversible strains end elastic aftereffect, Dal'nauka, Vladivostok, 2013 (in Russian)

[2] X. Heng, O.T. Bruhns, A. Meyers, “Elastoplasticity beyond small deformations”, Acta mechanica, 182 (2006), 31–111 | DOI

[3] A.A. Burenin, G.I. Bykovtsev, L.V. Kovtanyuk, “A simple model of finite strain in an elastoplastic medium”, Doklady Physics, 41:3 (1996), 127–129 | Zbl

[4] V.P. Myasnikov, “Equations of motion of elastoplastic materials under large strains”, Vestnik DVO RAN, 1996, no. 4, 8–13

[5] A.A. Burenin, L.V. Kovtanyuk, M.V. Polonik, “The formation of a one-dimensional residual stress field in the neighbourhood of a cylindrical defect in the continuity of an elastoplastic medium”, Journal of Applied Mathematics and Mechanics, 67:2 (2003), 283–292 | DOI | MR | Zbl

[6] A.A. Burenin, L.V. Kovtanyuk, A.L. Mazelis, “The pressing of an elastoviscoplastic material between rigid coaxial cylindrical surfaces”, Journal of Applied Mathematics and Mechanics, 70:3 (2006), 437–445 | DOI | Zbl

[7] A.A. Burenin, L.V. Kovtanyuk, “On elastic strains and a viscoplastic flow in a heavy layer placed on an inclined plane”, Mechanics of Solids, 45:2 (2010), 284–294 | DOI

[8] A.A. Burenin, L.V. Kovtanyuk, “The development and deceleration of the flow of an elastoplastic medium in a cylindrical tube”, Journal of Applied Mathematics and Mechanics, 77:5 (2013), 566–572 | DOI | MR | Zbl

[9] A.A. Burenin, L.V. Kovtanyuk, G.L. Panchenko, “Modeling of large elastoviscoplastic deformations with thermophysical effects taken into account”, Mechanics of Solids, 45:4 (2010), 583–594 | DOI

[10] A.A. Burenin, L.V. Kovtanyuk, A.L. Mazelis, “Development of a rectilinear axisymmetric viscoplastic flow and elastic aftereffect after its stop”, Journal of Applied Mechanics and Technical Physics, 51:2 (2010), 261–268 | DOI | MR | Zbl

[11] Yu.N. Rabotnov, Deformable solid mechanics, Nauka, M., 1988 (in Russian)

[12] G.P. Cherepanov, “An elastic-plastic problem under conditions of antiplanar deformation”, Journal of Applied Mathematics and Mechanics, 26:4 (1962), 697–708 | DOI | MR | Zbl

[13] B.D. Annin, V.D. Bondar, “Antiplane strain in a nonlinearly elastic incompressible body”, Journal of Applied Mechanics and Technical Physics, 47:6 (2006), 849–856 | DOI | MR | Zbl

[14] V.D. Bondar, “Antiplane strain of a body undergoing large-rotations”, Journal of Applied Mechanics and Technical Physics, 48:3 (2007), 460–466 | DOI | MR | Zbl

[15] V.D. Bondar, “Elastoplastic antiplane strain in an incompressible body”, Journal of Applied Mechanics and Technical Physics, 55:1 (2014), 19–29 | DOI | MR | Zbl

[16] S.V. Firsov, A.N. Prokudin, “Antiplane axisymmetric creep deformation of incompressible medium”, Journal of Siberian Federal University. Mathematics and Physics, 8:4 (2015), 406–415 | DOI | MR

[17] A.I. Lurie, Theory of Elasticity, Springer, Berlin, 2005 | MR

[18] F.N. Norton, The creep steel of high temperature, McGraw Hill, NY, 1929