On an analog of Descartes’ rule of signs and the Budan--Fourier theorem for entire functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 317-321.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proven the analog of Descartes’ rule of signs and the Budan–Fourier theorem for entire functions.
Keywords: entire function, Budan–Fourier theorem.
Mots-clés : Descartes’ rule
@article{JSFU_2018_11_3_a6,
     author = {Barlikbay B. Prenov},
     title = {On an analog of {Descartes{\textquoteright}} rule of signs and the {Budan--Fourier} theorem for entire functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {317--321},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a6/}
}
TY  - JOUR
AU  - Barlikbay B. Prenov
TI  - On an analog of Descartes’ rule of signs and the Budan--Fourier theorem for entire functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 317
EP  - 321
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a6/
LA  - en
ID  - JSFU_2018_11_3_a6
ER  - 
%0 Journal Article
%A Barlikbay B. Prenov
%T On an analog of Descartes’ rule of signs and the Budan--Fourier theorem for entire functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 317-321
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a6/
%G en
%F JSFU_2018_11_3_a6
Barlikbay B. Prenov. On an analog of Descartes’ rule of signs and the Budan--Fourier theorem for entire functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 317-321. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a6/

[1] A.G. Kurosh, Higher Algebra, Nauka, 1975 (in Russian)

[2] V.I. Bykov, A.M. Kytmanov, M.Z. Lazman, Elimination Methods in Polynomial Computer Algebra, ed. M. Passare, Kluwer Academic Publishers, Basel, 1998

[3] V.I. Bykov, Modelling of Critical Phenomena in Chemical Kinetics, Nauka, M., 1988 (in Russian)

[4] V.I. Bykov, S.B. Tsybenova, Non-linear models of chemical kinetics, KRASAND, M., 2011 (in Russian)

[5] O.V. Khodos, “On Some Systems of Non-algebraic Equations in $\mathbb C^{n}$”, J. Sib. Fed. Univ. Math. Phys., 7:4 (2014), 455–465

[6] G. Polya, G. Szegő, Aufgaben und lehrsätze aus der analysis, Springer-Verlag, Berlin–Göttingen, 1964

[7] A.I. Markushevich, Theory of analytic functions, v. 2, Nauka, M., 1968 (in Russian))

[8] A.M. Kytmanov, O.V. Khodos, “On localization of zeros of an entire function of finite order of growth”, Complex Analysis and Operator Theory, 11:2 (2017), 393–416

[9] F.R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing, 2000 (Reprinted by American Mathematical Society)

[10] A.M. Kytmanov, Ya.M. Naprienko, “One approach to finding the resultant of two entire functions”, Complex variables and elliptic equations, 62:2 (2017), 269–286