On rate of convergence of Tonelli's and weak approximation methods for loaded equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 286-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a loaded partial differential equation arising in coefficient inverse problem. The convergence of Tonelli's and weak approximation methods for this problem is previously proved. In the article we will prove linear rate of convergence of given methods.
Keywords: differential equation, inverse problem, Cauchy problem, Tonelli's method, weak approximation method
Mots-clés : convergence.
@article{JSFU_2018_11_3_a2,
     author = {Yuri Ya. Belov and Kirill V. Korshun},
     title = {On rate of convergence of {Tonelli's} and weak approximation methods for loaded equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {286--294},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a2/}
}
TY  - JOUR
AU  - Yuri Ya. Belov
AU  - Kirill V. Korshun
TI  - On rate of convergence of Tonelli's and weak approximation methods for loaded equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 286
EP  - 294
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a2/
LA  - en
ID  - JSFU_2018_11_3_a2
ER  - 
%0 Journal Article
%A Yuri Ya. Belov
%A Kirill V. Korshun
%T On rate of convergence of Tonelli's and weak approximation methods for loaded equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 286-294
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a2/
%G en
%F JSFU_2018_11_3_a2
Yuri Ya. Belov; Kirill V. Korshun. On rate of convergence of Tonelli's and weak approximation methods for loaded equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 286-294. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a2/

[1] Yu.Ya. Belov et al., Nonclassical and inverse boundary-value problems, Nauchnye zametki, Krasnoyarsk, 2007 (in Russian)

[2] Yu.Ya. Belov, S.A. Cantor, Weak appromixation method, Krasnoyarsk Gos. Univ., Krasnoyarsk, 1999 (in Russian)

[3] L. Tonelli, Opere scelte. A cura dell'Unione matematica italiana e col contributo del Consiglio nazionale delle ricerce, Edizioni Cremonese, Roma, 1962 | MR

[4] Yu.Ya. Belov, K.V. Korshun, “On some inverse problem for Burgers-type equation”, Siberian journal of industrial mathematics, 16:3 (2013), 28–40 | MR | Zbl

[5] N.N. Yanenko, G.V. Demidov, “Investigation of a Cauchy problem by weak approximation method”, Doklady AN SSSR, 167:6 (1966), 1242–1244 | MR | Zbl

[6] A.A. Samarsky, “On convergence of fractional steps method for heat transfer equations”, Journal of computational mathematics and mathematical physics, 2:6 (1962), 1347–1354 | DOI | MR

[7] Yu.Ya. Belov, “On Estimates of Solutions of the Split Problems for Some Multidimensional Partial Differential Equations”, Journal of Siberian Federal University. Mathematics $\$ Physics, 2:3 (2009), 258–270 | MR