Systematization and analysis of integrals of motion for an incompressible fluid flow
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 370-382

Voir la notice de l'article provenant de la source Math-Net.Ru

An analysis of integrals of motion of an incompressible fluid flow both known and new obtained by author are presented in the paper. It was found that the known integrals of Lagrange–Cauchy, Bernoulli and Euler–Bernoulli are special cases of a new more general integral. It was shown that the set of all integrals of motion of an incompressible fluid form a logical chain which can be represented as a tree.
Keywords: Navier–Stokes equations, partial derivative, root integral, stream pseudo-function, potential, tree.
Mots-clés : incompressible fluid, motion, Euler equations
@article{JSFU_2018_11_3_a13,
     author = {Alexander V. Koptev},
     title = {Systematization and analysis of integrals of motion for an incompressible fluid flow},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {370--382},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a13/}
}
TY  - JOUR
AU  - Alexander V. Koptev
TI  - Systematization and analysis of integrals of motion for an incompressible fluid flow
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 370
EP  - 382
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a13/
LA  - en
ID  - JSFU_2018_11_3_a13
ER  - 
%0 Journal Article
%A Alexander V. Koptev
%T Systematization and analysis of integrals of motion for an incompressible fluid flow
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 370-382
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a13/
%G en
%F JSFU_2018_11_3_a13
Alexander V. Koptev. Systematization and analysis of integrals of motion for an incompressible fluid flow. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 370-382. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a13/