Systematization and analysis of integrals of motion for an incompressible fluid flow
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 370-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analysis of integrals of motion of an incompressible fluid flow both known and new obtained by author are presented in the paper. It was found that the known integrals of Lagrange–Cauchy, Bernoulli and Euler–Bernoulli are special cases of a new more general integral. It was shown that the set of all integrals of motion of an incompressible fluid form a logical chain which can be represented as a tree.
Keywords: Navier–Stokes equations, partial derivative, root integral, stream pseudo-function, potential, tree.
Mots-clés : incompressible fluid, motion, Euler equations
@article{JSFU_2018_11_3_a13,
     author = {Alexander V. Koptev},
     title = {Systematization and analysis of integrals of motion for an incompressible fluid flow},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {370--382},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a13/}
}
TY  - JOUR
AU  - Alexander V. Koptev
TI  - Systematization and analysis of integrals of motion for an incompressible fluid flow
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 370
EP  - 382
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a13/
LA  - en
ID  - JSFU_2018_11_3_a13
ER  - 
%0 Journal Article
%A Alexander V. Koptev
%T Systematization and analysis of integrals of motion for an incompressible fluid flow
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 370-382
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a13/
%G en
%F JSFU_2018_11_3_a13
Alexander V. Koptev. Systematization and analysis of integrals of motion for an incompressible fluid flow. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 370-382. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a13/

[1] L.I. Sedov, Continuum mechanics, v. 2, Nauka, M., 1970 (in Russian) | MR | Zbl

[2] L.G. Loitsaynskiy, Mechanics of Fluid and Gas, Nauka, M., 1987 (in Russian)

[3] N.E. Kochin, I.A. Kibel, N.V. Rose, Theoretical hydromechanics, v. 1, Fismatlit, M., 1963 (in Russian) | MR

[4] S.V. Vallander, Lectures on hydromechanics, Leningrad Gos. Univ., L., 1978 (in Russian) | MR

[5] O.A. Ladizhenskaya, The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, New York, 1969 | MR

[6] C.L. Fefferman, Existence and Smoothness of the Navier–Stokes Equation, Preprint, Princeton Univ., Math. Dept., Princeton, NJ, USA, 2000 | MR

[7] A.V. Koptev, “Integrals of the Navier–Stokes Equations”, Trudy Sredne-volzhskogo Matematicheskogo Obshchestva, Saransk, 6(1):1 (2004), 215–225 (in Russian) | Zbl

[8] A.V. Koptev, “First integral and Ways of Further Integration of Navier–Stokes Equations”, Izv. Ross. gos. pedagog. univ. im. Gertsena, St-Petersburg, 147 (2012), 7–17 (in Russian)

[9] A.V. Koptev, “First integral of motion for an incompressible fluid flow”, Proc. of 11-th All-Russian Congress on fundamental problems of theoretical and applied mechanics, Privolzhskiy Federal Univ., Kazan, 2015, 1957–1959 (in Russian) | MR

[10] A.V. Koptev, “Nonlinear Effects in Poiseuille Problem”, Journal of Siberian Federal University. Math. and Phys., 6:3 (2013), 308–314

[11] V.M. Zhuravlev, “A new representation of two-dimensional equations of the dynamics of an incompressible fluid”, Prikladnaya matematika i mekhanika, 58:6 (1994), 61–67 (in Russian) | MR

[12] A.D. Polynin, A.I. Zhurov, “Parametically defined nonlinear differential equations and their solutions”, Applied Math. Letters, 55 (2016), 72–80 | DOI | MR

[13] A.V. Koptev, “Generator of Solution of 2D Navier–Stokes Equations”, Journal of Siberian Federal University, Math. and Phys., 7:3 (2014), 324–330 | MR

[14] A.V. Koptev, “The Solution of Initial and Boundarry Value Problem for 3D Navier–Stokes Equations and its Features”, Izv. Ross. gos. pedagog. univ. im. Gertsena, St-Petersburg, 165 (2014), 7–18 (in Russian)

[15] A.V. Koptev, “Dynamic Responce of an Underwater Pipeline on the Sea Currents”, Vestnik gos. univ. morskogo i rechnogo flota im. adm. S. O. Makarova, St-Petersburg, 26:4 (2014), 107–114 (in Russian)

[16] A.V. Koptev, “Theoretical Research of the Flow Around the Cylinder of an Ideal Incompressible Medium in the Presence of a Shielding Effect”, Vestnik gos. univ. morskogo i rechnogo flota im. adm. S. O. Makarova, St-Petersburg, 36:2 (2016), 127–137 (in Russian)