Solution of boundary value problems of plasticity with the use of conservation laws
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 356-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper conservation laws of a special form for systems of first-order differential equations depending on two dependent and independent variables are looked at. It is shown how the conservation laws can be used to solve hyperbolic-type and elliptic-type systems of equations that are come across in the theory of plasticity. Examples of an effective use of the described technique are given. With the use of the conservation laws was found the elastoplastic boundary in a problem of stress-strain state of a plate with free-form holes.
Keywords: conservation laws, elastic-plastic boundary.
@article{JSFU_2018_11_3_a11,
     author = {Sergei I. Senashov and Irina L. Savostyanova and Olga N. Cherepanova},
     title = {Solution of boundary value problems of plasticity with the use of conservation laws},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {356--363},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a11/}
}
TY  - JOUR
AU  - Sergei I. Senashov
AU  - Irina L. Savostyanova
AU  - Olga N. Cherepanova
TI  - Solution of boundary value problems of plasticity with the use of conservation laws
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 356
EP  - 363
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a11/
LA  - en
ID  - JSFU_2018_11_3_a11
ER  - 
%0 Journal Article
%A Sergei I. Senashov
%A Irina L. Savostyanova
%A Olga N. Cherepanova
%T Solution of boundary value problems of plasticity with the use of conservation laws
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 356-363
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a11/
%G en
%F JSFU_2018_11_3_a11
Sergei I. Senashov; Irina L. Savostyanova; Olga N. Cherepanova. Solution of boundary value problems of plasticity with the use of conservation laws. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 356-363. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a11/

[1] L.V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | Zbl

[2] S.I. Senashov, A.N. Yakhno, “Reproduction of solutions for bi-dimensional ideal plasticity”, Journal of Non–Linear Mechanics, 42 (2007), 500–503 | DOI | MR | Zbl

[3] S.I. Senashov, A.N. Yakhno, “Deformation of characteristic curves of the plane ideal plasticity equations by point symmetries”, Nonlinear analysis, 71 (2009), 1274–1284 | DOI | MR

[4] S.I. Senashov, O.N. Cherepanova, “New classes of solution of minimal surfaces”, J. Siberian Federal Univ., Math. and Physics, 3:2 (2010), 248–255 (in Russian)

[5] S.I. Senashov, “Conservation Laws. Hodograph Transformation and Boundary Value Problems of Plane Plasticity”, SIGMA, 8 (2012), 071 | MR | Zbl

[6] S.I. Senashov, A.N. Yakhno, “Some symmetry group aspects of a perfect plane plasticity system”, J. Phys. A: Math. Theor., 46 (2013), 355202 | DOI | MR | Zbl

[7] S.I. Senashov, A.N. Yakhno, “Conservation Laws of Three-Dimensional Perfect Plasticity Equations under von Mises Yield Criterion”, Abstract and Applied Analysis, 2013 (2013), 702–732 | DOI | MR

[8] S.I. Senashov, A.V. Kondrin, O.N. Cherepanova, “On Elastoplastic Torsion of a Rod with Multiply Connected Cross-Section”, J. Siberian Federal Univ., Math. and Physics, 7:1 (2015), 343–351 | DOI

[9] S.I. Senashov, O.N. Cherepanova, A.V. Kondrin, “Elasto-plastic Bending of Beam”, J. Siberian Federal Univ., Math. and Physics, 7:2 (2014), 218–223

[10] S.I. Senashov, E.V. Filyushina, O.V. Gomonova, “Sonstruction of elasto-plastic boundaries using conservation laws”, Vestnik SibGAU, 16:2 (2015), 343–359

[11] S.I. Senashov, A.M. Vinogradov, “Symmetries and Conservation Laws of 2-Dimensional Ideal Plasticity”, Proc. of Edinb. Math. Soc., 31 (1988), 415–439 | DOI | MR | Zbl

[12] S.I. Senashov, P.P. Kiriakov, A.N. Yakhno, Application of symmetries and conservation laws of solution of Differential Equation, Nauka, Novosibirsk, 2001 (in Russian) | MR