Analysis of an exact solution of problem of the evaporative convection (review). Part~II. Three-dimensional flows
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 342-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the review of exact solutions of the three-dimensional convection problems is presented. The solutions allow one to model the two-layer convective fluid flows with evaporation at the thermocapillary interface.
Keywords: evaporative convection, three-dimensional flows
Mots-clés : exact solution, thermocapillary interface.
@article{JSFU_2018_11_3_a10,
     author = {Victoria B. Bekezhanova and Olga N. Goncharova and Ilia A. Shefer},
     title = {Analysis of an exact solution of problem of the evaporative convection (review). {Part~II.} {Three-dimensional} flows},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {342--355},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a10/}
}
TY  - JOUR
AU  - Victoria B. Bekezhanova
AU  - Olga N. Goncharova
AU  - Ilia A. Shefer
TI  - Analysis of an exact solution of problem of the evaporative convection (review). Part~II. Three-dimensional flows
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 342
EP  - 355
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a10/
LA  - en
ID  - JSFU_2018_11_3_a10
ER  - 
%0 Journal Article
%A Victoria B. Bekezhanova
%A Olga N. Goncharova
%A Ilia A. Shefer
%T Analysis of an exact solution of problem of the evaporative convection (review). Part~II. Three-dimensional flows
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 342-355
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a10/
%G en
%F JSFU_2018_11_3_a10
Victoria B. Bekezhanova; Olga N. Goncharova; Ilia A. Shefer. Analysis of an exact solution of problem of the evaporative convection (review). Part~II. Three-dimensional flows. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 342-355. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a10/

[1] V.V. Pukhnachov, “Group-theoretical nature of the Birich's solution and its generalizations”, Book of Proc. “Symmetry and differential equations” (Krasnoyarsk, 2000), 180–183 (in Russian)

[2] R.V. Birikh, V.V. Pukhnachev, “An axial convective flow in a rotating tube with a longitudinal temperature gradient”, Dokl. Phys., 56:1 (2011), 47–52 | DOI | MR

[3] V.V. Pukhnachov, “Nonstationary analogues of Birikh solutions”, Izvestiya Altaiskogo gosudarstvennogo universiteta, 69:1/2 (2011), 62–69 (in Russian)

[4] V.V. Pukhnachov, “Convective flows in the long tubes”, Bulleten Nizhnyi Novgorod Univer., Nizhnyi Novgorod, 4:5 (2011), 2446–2448

[5] O.N. Goncharova, O.A. Kabov, V.V. Pukhnachov, “Solutions of special type describing the three dimensional thermocapillary flows with an interface”, Int. J. Heat Mass Transfer, 55:4 (2012), 715–725 | DOI | Zbl

[6] V.K. Andreev, O.V. Kaptsov, V.V. Pukhnachov, A.A. Rodionov, Applications of group theoretical methods in hydrodynamics, Kluwer Academic Publ., Dordrecht–Boston–London, 1998 | MR | Zbl

[7] T.P. Lyubimova, D.V. Lyubimov, V.A. Morozov, R.V. Scurdin, H. Ben Hadid, D. Henry, “Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 1. Effect of aspect ratio and Prandtl number”, J. Fluid Mech., 635 (2009), 275–295 | DOI | MR | Zbl

[8] D.V. Lyubimov, T.P. Lyubimova, A.B. Perminov, D. Henry, H. Ben Hadid, “Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 2. Effect of aspect ratio and Prandtl number”, J. Fluid Mech., 635 (2009), 297–319 | DOI | MR | Zbl

[9] T.P. Lyubimova, D.A. Nikitin, “Three-dimensional advective flows in a horizontal square cross-section cylinder with adiabatic lateral walls”, Computational continuum mechanics, 4:2 (2011), 72–81 | DOI | MR

[10] V.K. Andreev, N.L. Sobachkina, Motion of Binary Mixture in Plane and Cylindrical Domains, Sib. Federal Uni., Krasnoyarsk, 2012 (in Russian)

[11] I.I. Ryzhkov, V.M. Shevtsova, “Thermocapillary instabilities in liquid columns under co-and counter-current gas flows”, Int. J. Heat Mass Transfer, 55:4 (2012), 1236–1245 | DOI | Zbl

[12] O. Goncharova, O. Kabov, “Gas flow and thermocapillary effects on fluid flow dynamics in a horizontal layer”, Microgravity Sci. Technol., 21:1 (2009), S129–S137 | MR

[13] V.A. Briskman, T.P. Lyubimova, A.A. Nepomnyaschy, A.L. Zuev, “Thermocapillary flows and deformations of the surface in the systems of fluid layers with the longirudinal tempperature gradient in microgravity”, Microgravity Sci. Technol., IV:2 (1991), 98–99

[14] V.K. Andreev, The Birikh solution of the convection equations and some its generalizations, Pre-Print No 1–10, ICM SB RAS, Krasnoyarsk, 2010 (in Russian)

[15] R. Kh.Zeytounian, The Benard-Marangoni thermocapillary-instability problem, Usp. Phys. Nauk, 168:3 (1998), 259–286 | DOI

[16] A.A. Nepomnyashchy, M.G. Velarde, P. Colinet, Interfacial phenomena and convection, Chapman Hall/CRC, Boca Raton, 2002 | MR | Zbl

[17] O.N. Goncharova, O.A. Kabov, “Investigation of the two-layer fluid flows with evaporation at interface on the basis of the exact solutions of the 3D problems of convection”, Journal of Physics: Conference Series, 754 (2016), 032008 | DOI

[18] V.V. Pukhnachov, Viscous fluid flow with free boundaries, Gos. Univ., Novosibirsk, 1989 (in Russian) | MR

[19] W. Doerfler, O. Goncharova, D. Kroener, “Fluid flow with dynamic contact angle: numerical simulation”, ZAMM, 82:3 (2002), 167–176 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[20] A.S. Ovcharova, “Method of calculating steady-state flows of a viscous fluid with free boundary in vortex-stream function variables”, J. Appl. Mech. Techn. Phys., 39:2 (1998), 211–219 | DOI | MR | Zbl

[21] N.N. Yanenko, The method of fractional steps: the solution of problems of mathematical physics of several variables, Springer Verl., Berlin–Heidelberg–New York, 1971 | MR | Zbl

[22] V.K. Andreev, Yu.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachov, Mathematical models of convection, De Gruyter, Berlin–Boston, 2012 | MR | Zbl