On formal solutions of the H\"ormander’s initial-boundary value problem in the class of Laurent series
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 278-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a derivation of the ring of Laurent series with supports in rational cones and prove existence and uniqueness of a solution to an analog of one initial-boundary value problem of Hörmander for polynomial differential operators with constant coefficients in the class of formal Laurent series.
Keywords: differential operator, the Hörmander’s problem, difference equations
Mots-clés : multiple Laurent series.
@article{JSFU_2018_11_3_a1,
     author = {Evgeny K. Leinartas and Tatiana I. Yakovleva},
     title = {On formal solutions of the {H\"ormander{\textquoteright}s} initial-boundary value problem in the class of {Laurent} series},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {278--285},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a1/}
}
TY  - JOUR
AU  - Evgeny K. Leinartas
AU  - Tatiana I. Yakovleva
TI  - On formal solutions of the H\"ormander’s initial-boundary value problem in the class of Laurent series
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 278
EP  - 285
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a1/
LA  - en
ID  - JSFU_2018_11_3_a1
ER  - 
%0 Journal Article
%A Evgeny K. Leinartas
%A Tatiana I. Yakovleva
%T On formal solutions of the H\"ormander’s initial-boundary value problem in the class of Laurent series
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 278-285
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a1/
%G en
%F JSFU_2018_11_3_a1
Evgeny K. Leinartas; Tatiana I. Yakovleva. On formal solutions of the H\"ormander’s initial-boundary value problem in the class of Laurent series. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 278-285. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a1/

[1] N.M. Gunther, “On the extension of the Cauchy theorem to any system of partial differential equations”, Mat. sb., 32:2 (1925), 367–447 (in Russian)

[2] A.G. Khovansky, S.P. Chulkov, “The Hilbert and Hilbert-Samuel polynomials and the partial differential equations”, Matem. zametki, 7:1 (2005), 141–151 (in Russian)

[3] A.G. Khovansky, S.P. Chulkov, “The Hilbert polynomial for systems of linear partial differential equations with analytic coefficients”, Izv. RAN. Ser. matem., 70:1 (2006), 163–182 (in Russian)

[4] L. Hörmander, Linear differential operators with partial derivatives, Mir, M., 1965 (in Russian)

[5] T.I. Yakovleva, “Well-posedness of the Cauchy problem for multidimensional difference equations in rational cones”, Sib. Math. J., 58:2 (2017), 363–372

[6] T.I. Nekrasova, “On the Cauchy problem for multidimensional difference equations in rational cone”, Journal of Siberian Federal University, Math. and Phys., 8:2 (2015), 184–191

[7] E.K. Leinartas, T.I. Nekrasova, “Constant coefficient linear difference equations on the rational cones of the integer lattice”, Sib. Math. J., 57:2 (2016), 98–112

[8] E.K. Leinartas, M.S. Rogozina, “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Sib. Math. J., 56:1 (2015), 111–121

[9] L. Bieberbach, Analytic continuation, Nauka, M., 1967 (in Russian)

[10] L.I. Ronkin, Introduction to the theory of entire functions of several variables, Nauka, M., 1971 (in Russian)