On formal solutions of the H\"ormander’s initial-boundary value problem in the class of Laurent series
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 278-285
Voir la notice de l'article provenant de la source Math-Net.Ru
We define a derivation of the ring of Laurent series with supports in rational cones and prove existence and
uniqueness of a solution to an analog of one initial-boundary value problem of Hörmander for polynomial
differential operators with constant coefficients in the class of formal Laurent series.
Keywords:
differential operator, the Hörmander’s problem, difference equations
Mots-clés : multiple Laurent series.
Mots-clés : multiple Laurent series.
@article{JSFU_2018_11_3_a1,
author = {Evgeny K. Leinartas and Tatiana I. Yakovleva},
title = {On formal solutions of the {H\"ormander{\textquoteright}s} initial-boundary value problem in the class of {Laurent} series},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {278--285},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a1/}
}
TY - JOUR AU - Evgeny K. Leinartas AU - Tatiana I. Yakovleva TI - On formal solutions of the H\"ormander’s initial-boundary value problem in the class of Laurent series JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 278 EP - 285 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a1/ LA - en ID - JSFU_2018_11_3_a1 ER -
%0 Journal Article %A Evgeny K. Leinartas %A Tatiana I. Yakovleva %T On formal solutions of the H\"ormander’s initial-boundary value problem in the class of Laurent series %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 278-285 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a1/ %G en %F JSFU_2018_11_3_a1
Evgeny K. Leinartas; Tatiana I. Yakovleva. On formal solutions of the H\"ormander’s initial-boundary value problem in the class of Laurent series. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 278-285. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a1/