The motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 194-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

We studied the problem of axisymmetric motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers. Using Laplace transformation properties the exact analytical solution is obtained. It is shown that a stationary solution is the limiting one with the growth of time if satisfy certain conditions imposed on the external temperature. Some examples of numerical reconstruction of the velocity, temperature and concentration fields are considered, which correspond well with the theoretical results.
Keywords: binary mixture, free boundary, stationary solution, the Marangoni number.
Mots-clés : Laplace transformation
@article{JSFU_2018_11_2_a7,
     author = {Vi{\cyrs}tor K. Andreev and Natalya L. Sobachkina},
     title = {The motion of a binary mixture with a cylindrical free boundary at small {Marangoni} numbers},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {194--205},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a7/}
}
TY  - JOUR
AU  - Viсtor K. Andreev
AU  - Natalya L. Sobachkina
TI  - The motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 194
EP  - 205
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a7/
LA  - en
ID  - JSFU_2018_11_2_a7
ER  - 
%0 Journal Article
%A Viсtor K. Andreev
%A Natalya L. Sobachkina
%T The motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 194-205
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a7/
%G en
%F JSFU_2018_11_2_a7
Viсtor K. Andreev; Natalya L. Sobachkina. The motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 194-205. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a7/

[1] L.K.Antonovsky, B.K.Kopbosynov, “Unsteady thermocapillary drift of a viscous liquid drop”, Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1986, no. 2, 59–64 (in Russian)

[2] O.V.Admaev, V.K.Andreev, “Unsteady motion of the bubble under the action of thermocapillary forces”, Mathematicheskoe modelirovanie v mehanike, Dep. VINITI, CVAC SB RAS, Krasnoyarsk, 1997, 4–9 (in Russian)

[3] V.K.Andreev, “About single invariant solution of the equations of diffusion”, Materials of the 63rd scientific conference “Gertsenovskie chteniya”, Spb. RGPU im. A. I. Herzena, 2010, 8–17 (in Russian)

[4] V.K.Andreev, V.E.Zakataev, E.A.Rybicki, Thermocapillary instability, Nauka, Novosibirsk, 2000 (in Russian) | MR

[5] L.V.Ovsyannikov, Group analysis of differential equations, Nauka, M., 1978 (in Russian) | MR | Zbl

[6] V.K.Andreev, N.L.Sobachkina, Properties of solutions of initial-boundary value tasks arising from the movement of a binary mixture in cylindrical the pipe, Preprint No 1, ICM SB RAS, Krasnoyarsk, 2009 (in Russian)

[7] M.Abramovic, I.Stigan, Handbook of special functions, Nauka, M., 1979 (in Russian)

[8] V.I.Krylov, N.S.Skoblya, Methods of approximate Fourier transformation and conversion of the Laplace transform, Nauka, M., 1974 (in Russian) | MR