Analysis of an exact solution of problem of the evaporative convection (review). Part I. Plane case
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 178-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

Development of theory describing the convection under conditions of "liquid – gas" phase transition, is caused by the active experimental study of the convective phenomena accompanied by evaporation/condensation at interphase. Results of the analytical and numerical investigation of new nonstandard problems of heat and mass transfer in domains with free surfaces or interfaces allow one to evaluate the adequacy of new mathematical models and to derive new characteristic criteria. The obtained fundamental knowledge on physical mechanisms of the studied processes provides the basis of modification and improvement of the fluidic technologies using the evaporating liquids and gas-vapor mixtures as working media. In the paper the analysis of the exact solution of the convection equations, which gives a possibility to model the two-layer convective fluid flows with evaporation, is presented.
Keywords: evaporative convection, two-layer flows
Mots-clés : exact solution, thermocapillary interface.
@article{JSFU_2018_11_2_a5,
     author = {Victoria B. Bekezhanova and Olga N. Goncharova and Ilia A. Shefer},
     title = {Analysis of an exact solution of problem of the evaporative convection (review). {Part} {I.} {Plane} case},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {178--190},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a5/}
}
TY  - JOUR
AU  - Victoria B. Bekezhanova
AU  - Olga N. Goncharova
AU  - Ilia A. Shefer
TI  - Analysis of an exact solution of problem of the evaporative convection (review). Part I. Plane case
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 178
EP  - 190
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a5/
LA  - en
ID  - JSFU_2018_11_2_a5
ER  - 
%0 Journal Article
%A Victoria B. Bekezhanova
%A Olga N. Goncharova
%A Ilia A. Shefer
%T Analysis of an exact solution of problem of the evaporative convection (review). Part I. Plane case
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 178-190
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a5/
%G en
%F JSFU_2018_11_2_a5
Victoria B. Bekezhanova; Olga N. Goncharova; Ilia A. Shefer. Analysis of an exact solution of problem of the evaporative convection (review). Part I. Plane case. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 178-190. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a5/

[1] G.Z.Gershuni, E.M.Zhukhovizky, Convective stability of an incompressible liquid, Nauka, M., 1972 (in Russian)

[2] D. Joseph, Stability of fluid motions, Springer Verlag, Berlin–Heidelberg–New York, 1976 | MR

[3] V.I. Yudovich, Convection of an isothermally incompressible liquid, Dep. v VINITI, Rostov on Don University, Rostov on Don, 1999 (in Russian) | Zbl

[4] V.K.Andreev, O.V. Kaptsov, V.V.Pukhnachov, A.A.Rodionov, Applications of group theoretical methods in hydrodynamics, Kluwer Acad. Publ., Dordrecht–Boston–London, 1998 | MR | Zbl

[5] V.K.Andreev, V.E.Zakhvataev, E.A. Ryabitskii, Thermocapillary instability, Nauka, Novosibirsk, 2000 (in Russian) | MR

[6] P.Colinet, J.C.Legros, M.G.Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities, Wiley-VCH, Berlin, 2001 | MR | Zbl

[7] V.K. Andreev, Yu.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachov, Mathematical models of convection, De Gruyter, Berlin–Boston, 2012 | MR | Zbl

[8] V.K.Andreev, V.B.Bekezhanova, Stability of the non-isothermal fluids, Siberian Federal University, Krasnoyarsk, 2010 (in Russian)

[9] V.V.Pukhnachov, “Nonstationary analogues of Birikh solutions”, Izvestiya Altaiskogo gosudarstvennogo universiteta, 69:1/2 (2011), 62–69 (in Russian)

[10] V.L.Katkov, “Exact solutions of certain convection problems”, J. Appl. Math. and Mechanics, 32:3 (1968), 482–487 | DOI | Zbl

[11] O.N.Goncharova, “Group classification of the equations of natural convection”, Continuum Dynamics (Dinamika sploshnoi sredy), 79, Siberian Branch of the Academy of Sci. USSR, Institute of Hydrodynamics, 1987, 22–35 (in Russian) | MR

[12] I.I.Ryzhkov, “Symmetry Analysis of Equations for Convection in Binary Mixture”, J. of Siberian Federal University. Mathematics Physics, 1:4 (2008), 410–431

[13] G.A.Ostroumov, Free convection under the conditions of an internal problem, Gostekhizdat, M.–L., 1952 (in Russian) | MR

[14] V.G.Levich, Physico chemical hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey, 1962

[15] R.V.Birikh, “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 3 (1969), 43–45 | DOI

[16] M.I.Shliomis, V.I.Yakushin, “Convection in a two-layers binary system with an evaporation”, Collected papers: Uchenye zapiski Permskogo Gosuniversiteta, seriya Gidrodinamika, 4, 1972, 129–140 (in Russian)

[17] O.N.Goncharova, E.V.Rezanova, “Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface”, J. Appl. Mech. Techn. Phys., 55:2 (2014), 247–257 | DOI | MR | Zbl

[18] O.N.Goncharova, O.A.Kabov, V.V.Pukhnachov, “Solutions of special type describing the three dimensional thermocapillary flows with an interface”, Int. J. Heat Mass Transfer, 55:4 (2012), 715–725 | DOI | Zbl

[19] O.N.Goncharova, O.A.Kabov, “Investigation of the two-layer fluid flows with evaporation at interface on the basis of the exact solutions of the 3D problems of convection”, Journal of Physics: Conference Series, 754 (2016), 032008 | DOI

[20] V.V.Popov, “Mixed convection in a two-layer liquid”, Theoretical principles of chemical technology, XV:3 (1981), 398–404 (in Russian)

[21] Yu.V.Sanochkin, “Thermocapillary motion of a liquid”, J. Appl. Mech. Tech. Phys., 30:5 (1989), 750–754 | DOI

[22] O.N.Goncharova, O.A.Kabov, “Gravitational-thermocapillary convection of fluid in the horizontal layer in co-current gas flow”, Doklady Physics, 54:5 (2009), 242–247 | DOI | MR | Zbl

[23] Y.V.Lyulin, O.A.Kabov, “Evaporative convection in a horizontal liquid layer under shear-stress gas flow”, Int. J. Heat Mass Transfer, 70 (2014), 599–609 | DOI

[24] O.Goncharova, O.Kabov, “Gas flow and thermocapillary effects on fluid flow dynamics in a horizontal layer”, Microgravity Sci. Technol., 21:1 (2009), S129–S137 | MR

[25] O.N.Goncharova, O.A.Kabov, “Mathematical and numerical modeling of convection in a horizontal layer under co-current gas flow”, Int. J. Heat Mass Transfer, 53 (2010), 2795–2807 | DOI | Zbl

[26] C.S.Iorio, O.A.Kabov, J-C.Legros, “Thermal Patterns in evaporating liquid”, Microgravity Sci. Technol, 19:3-4 (2007), 27–29 | DOI

[27] C.S.Iorio, O.N.Goncharova, O.A.Kabov, “Study of Evaporative Convection in an Open Cavity under Shear Stress Flow”, Microgravity Sci. Technol., 21:1 (2009), S313–S319

[28] C.S.Iorio, O.N.Goncharova, O.A.Kabov, “Influence of boundaries on shear-driven flow of liquids in open cavities”, Microgravity Sci. Technol., 23:4 (2011), 373–379 | DOI

[29] Y.Lyulin, O.Kabov, “Measurement of the evaporation mass flow rate in a horizontal liquid layer partly opened into flowing gas”, Tech. Phys. Lett., 39:17 (2013), 795-797 | DOI

[30] I.V.Repin, “Stationary flows of two-layer heat-conducting liquid in a plane layer”, Proceedings of International Conference “Mathematical models and methods of their investigation”, v. 2, ICM SB RAS, Krasnoyarsk, 2001, 161–165

[31] V.K.Andreev, I.V.Stepanova, “Unidirectional flows of binary mixtures within the framework of the Oberbeck–Boussinesq model”, Fluid Dynamics, 51:2 (2016), 136–147 | DOI | MR | Zbl

[32] O.N.Goncharova, M.Hennenberg, E.V.Rezanova, O.A.Kabov, “Modeling of the convective fluid flows with evaporation in the two-layer systems”, Interfacial Phenomena and Heat Transfer, 1:3 (2013), 317–338 | DOI

[33] E.V.Rezanova, “An Exact Solution for Mathematical Modeling of Two-Layer Flows with Soret and Dufour Effects”, Izvestiya Altaiskogo gosudarstvennogo universiteta, 81:1/2 (2014), 57–61 (in Russian)

[34] O.N.Goncharova, E.V.Rezanova, Yu.V.Lyulin, O.A.Kabov, “Modeling of two-layer liquid-gas flow with account for evaporation”, Thermophysics and Aeromechanics, 5 (2015), 631-637 | DOI

[35] V.B.Bekezhanova, O.N.Goncharova, “Stability of the exact solutions describing the two-layer ows with evaporation at interface”, Fluid Dynamics Research, 48:6 (2016), 061408 | DOI | MR

[36] A.V.Rodionova, E.V.Rezanova, “Stability of two-layer fluid flow”, J. Appl. Mech. Techn. Phys., 57:4 (2016), 588–595 | DOI | MR | Zbl

[37] E.V.Rezanova, I.A.Shefer, “Influence of thermal load on the characteristics of a flow with evaporation”, J. Appl. Industrial Math., 11:2 (2017), 274–283 | DOI | MR | Zbl

[38] V.B.Bekezhanova, O.N.Goncharova, E.V.Rezanova, I.A.Shefer, “Stability of two-layer fluid flows with evaporation at the interface”, Fluid Dynamics, 52:2 (2017), 189–200 | DOI | MR | Zbl

[39] M.A.Umov, Selected works, Gostehizdat, M., 1950 (in Russian) | MR

[40] K.A.Putilov, Physics course, v. 1, Fizmatgiz, M., 1963 (in Russian)

[41] D.V. Sivukhin, General physics course, v. 2, Fizmatlit, M., 2005 (in Russian)

[42] B.Gebhart, Y.Jaluria, R.L.Mahajan, B.Sammakia, Bouyancy-induced flows and transport, Springer Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1988

[43] T.A.Ghezzehei, R.C.Trautz, S.Finsterle, P.J.Cook, C.F.Ahlers, “Modeling coupled evaporation and seepage in ventilated cavities”, Vadose Zone Journal, 3 (2004), 806–818 | DOI

[44] L.F.Maciev, A.L.Stasenko, “Evaporation of a drop in the strongly superheated binary mixture”, Izvestiya AN SSSR. Energetika i transport, 1 (1987), 112–118 (in Russian)

[45] L.F.Maciev, T.N.Ruabinina, A.L.Stasenko, “Evaporation of a drop in a heat two-component jet with respect to the thermodiffusion and cross-cutting effect”, Modelirovanie v mehanike, 1 (1987), 106-114 (in Russian)