On intersection of primary subgroups in the group $\mathrm {Aut(F_4(2))}$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 171-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in a finite group $G$ which is isomorphic to the group of automorphisms of the Chevalley group $F_4(2)$, there are only three possibilities for ordered pairs of primary subgroups $A$ and $B$ with condition: $A\cap B^g\ne 1$ for any $g\in G$. We describe all ordered pairs $(A,B)$ of such subgroups up to conjugacy in the group $G$ and in particular, we prove that $A$ and $B$ are $2$-groups.
Keywords: finite group, almost simple group, primary subgroup.
@article{JSFU_2018_11_2_a4,
     author = {Viktor I. Zenkov and Yakov N. Nuzhin},
     title = {On intersection of primary subgroups in the group $\mathrm {Aut(F_4(2))}$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {171--177},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a4/}
}
TY  - JOUR
AU  - Viktor I. Zenkov
AU  - Yakov N. Nuzhin
TI  - On intersection of primary subgroups in the group $\mathrm {Aut(F_4(2))}$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 171
EP  - 177
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a4/
LA  - en
ID  - JSFU_2018_11_2_a4
ER  - 
%0 Journal Article
%A Viktor I. Zenkov
%A Yakov N. Nuzhin
%T On intersection of primary subgroups in the group $\mathrm {Aut(F_4(2))}$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 171-177
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a4/
%G en
%F JSFU_2018_11_2_a4
Viktor I. Zenkov; Yakov N. Nuzhin. On intersection of primary subgroups in the group $\mathrm {Aut(F_4(2))}$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 171-177. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a4/

[1] V.I.Zenkov, “On intersection of nilpotent subgroups in finite symmetric and alternating groups”, Trudy IMM UrO RAN, 19, no. 3, 2013, 144–149 (in Russian) | MR

[2] V.I.Zenkov, “Intersections of Abelian subgroups in finite groups”, Matemat. zametki, 56:2 (1994), 150–152 (in Russian) | MR | Zbl

[3] V.I.Zenkov, “Intersection of nilpotent subgroups in finite groups”, Fundamental. i prikladnaya matematika, 2:1 (1996), 1–92 (in Russian) | MR | Zbl

[4] V.I.Zenkov, “On intersection of nilpotent subgroups in finite groups with socle $L_2(q)$”, Siberian Math. J., 57:6 (2016), 1280–1290 (in Russian) | DOI | MR | Zbl

[5] V.I.Zenkov, Ya.N.Nuzhin, “On intersection of primary subgroups of odd order in finite almost simple groups”, Fundamental. i prikladnaya matematika, 19:6 (2014), 115–123 (in Russian) | MR

[6] R.Carter, Simple groups of Lie type, Wiley and Sons, London–New York–Sydney–Toronto, 1972 | MR | Zbl

[7] V.M.Levchuk, “Automorphisms of unipotent subgroup of Chevalley groups”, Algebra i Logika, 29:3 (1990), 315–338 (in Russian) | DOI | MR | Zbl

[8] N.Bourbaki, Groupes et algebres de Lie. VI-VI, Hermann, Paris, 1968 | MR | Zbl