On a question about generalized congruence subgroups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 66-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Elementary net (carpet) $\sigma=(\sigma_{ij})$ is called admissible (closed) if the elementary net (carpet) group $E(\sigma)$ does not contain a new elementary transvections. This work is related to the problem proposed by Y. N. Nuzhin in connection with the problem 15.46 from the Kourovka notebook proposed by V. M. Levchuk (admissibility (closure) of the elementary net (carpet) $\sigma = (\sigma_{ij})$ over a field $K$). An example of field $K$ and the net $\sigma=(\sigma_{ij})$ of order $n$ over the field $K$ are presented so that subgroup $\langle t_{ij}(\sigma_{ij}), t_{ji}(\sigma_{ji})\rangle$ is not coincident with group $E(\sigma)\cap\langle t_{ij}(K), \ t_{ji}(K)\rangle$.
Keywords: Carpets, carpet groups, nets, elementary nets, allowable elementary nets, closed elementary nets, elementary net group
Mots-clés : transvection.
@article{JSFU_2018_11_1_a9,
     author = {Vladimir A. Koibaev},
     title = {On a question about generalized congruence subgroups},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {66--69},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a9/}
}
TY  - JOUR
AU  - Vladimir A. Koibaev
TI  - On a question about generalized congruence subgroups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 66
EP  - 69
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a9/
LA  - en
ID  - JSFU_2018_11_1_a9
ER  - 
%0 Journal Article
%A Vladimir A. Koibaev
%T On a question about generalized congruence subgroups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 66-69
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a9/
%G en
%F JSFU_2018_11_1_a9
Vladimir A. Koibaev. On a question about generalized congruence subgroups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 66-69. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a9/

[1] The Kourovka notebook: unsolved problems in group theory, Issue 17, Russ. acad. of sciences, Siberian div., Inst. of mathematics, Novosibirsk, 2010

[2] V.M. Levchuk, “On generating sets of root elements of Chevalley groups over a field”, Algebra i logika, 22:5 (1983), 504–517 (in Russian) | DOI | MR

[3] R.Y. Dryaeva, V.A. Koibaev, “Decomposition of elementary transvection in elementary group”, Zapiski Nauchnykh Seminarov POMI, 435, 2015, 33–41 (in Russian) | MR

[4] V.A. Koibaev, “Nets associated with elementary nets”, Vladikavkaz. Mat. Zh., 12:4 (2010), 39–43 (in Russian) | MR

[5] V.A. Koibaev, “Elementary nets in linear groups”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 17, no. 4, 2011, 134–141 (in Russian)

[6] Z.I. Borevich, “Subgroups of linear groups rich in transvections”, Journal of Soviet Mathematics, 37:2 (1987), 928–934 | DOI

[7] V.M. Levchuk, “Parabolic subgroups of certain ABA-groups”, Mat. Zametki, 31:4 (1982), 509–525 (in Russian) | MR

[8] V.A. Koibaev, Y.N. Nuzhin, “Subgroups of the Chevalley Groups and Lie Rings Definable by a Collection of Additive Subgroups of the Initial Ring”, Journal of Mathematical Sciences, 201:4 (2014), 458–464 | DOI | MR