Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_1_a9, author = {Vladimir A. Koibaev}, title = {On a question about generalized congruence subgroups}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {66--69}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a9/} }
TY - JOUR AU - Vladimir A. Koibaev TI - On a question about generalized congruence subgroups JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 66 EP - 69 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a9/ LA - en ID - JSFU_2018_11_1_a9 ER -
Vladimir A. Koibaev. On a question about generalized congruence subgroups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 66-69. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a9/
[1] The Kourovka notebook: unsolved problems in group theory, Issue 17, Russ. acad. of sciences, Siberian div., Inst. of mathematics, Novosibirsk, 2010
[2] V.M. Levchuk, “On generating sets of root elements of Chevalley groups over a field”, Algebra i logika, 22:5 (1983), 504–517 (in Russian) | DOI | MR
[3] R.Y. Dryaeva, V.A. Koibaev, “Decomposition of elementary transvection in elementary group”, Zapiski Nauchnykh Seminarov POMI, 435, 2015, 33–41 (in Russian) | MR
[4] V.A. Koibaev, “Nets associated with elementary nets”, Vladikavkaz. Mat. Zh., 12:4 (2010), 39–43 (in Russian) | MR
[5] V.A. Koibaev, “Elementary nets in linear groups”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 17, no. 4, 2011, 134–141 (in Russian)
[6] Z.I. Borevich, “Subgroups of linear groups rich in transvections”, Journal of Soviet Mathematics, 37:2 (1987), 928–934 | DOI
[7] V.M. Levchuk, “Parabolic subgroups of certain ABA-groups”, Mat. Zametki, 31:4 (1982), 509–525 (in Russian) | MR
[8] V.A. Koibaev, Y.N. Nuzhin, “Subgroups of the Chevalley Groups and Lie Rings Definable by a Collection of Additive Subgroups of the Initial Ring”, Journal of Mathematical Sciences, 201:4 (2014), 458–464 | DOI | MR