Morera’s theorem and functional series in the class of $A$-analytic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 50-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to investigate $A$-analytic functions in a special case when the function $A$ is an anti-analytic function in a domain. We prove that a continuous function satisfying the integral condition of the Cauchy theorem is $A$-analytic (an analog of Morera's theorem, Sec. 2). In Sec. 3 we prove an analog of the Weierstrass theorem for functional series of $A$-analytic functions and the expansion of $A$-analytic functions into functional series (Sec. 4).
Keywords: $A$-analytic functions, analog of Morera's theorem, analog of the Weierstrass theorem, expansion of $A$-analytic functions.
@article{JSFU_2018_11_1_a7,
     author = {Nasridin M. Jabborov},
     title = {Morera{\textquoteright}s theorem and functional series in the class of $A$-analytic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a7/}
}
TY  - JOUR
AU  - Nasridin M. Jabborov
TI  - Morera’s theorem and functional series in the class of $A$-analytic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 50
EP  - 59
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a7/
LA  - en
ID  - JSFU_2018_11_1_a7
ER  - 
%0 Journal Article
%A Nasridin M. Jabborov
%T Morera’s theorem and functional series in the class of $A$-analytic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 50-59
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a7/
%G en
%F JSFU_2018_11_1_a7
Nasridin M. Jabborov. Morera’s theorem and functional series in the class of $A$-analytic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 50-59. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a7/

[1] L. Ahlfors, Lectures on quasiconformal mappings, University Lecture Series, 38, 2006 | DOI | MR

[2] L. Bers, Mathematical aspects of subsonic and transonic gas dynamics, Wiley, 1958 | MR

[3] L. Bers, “An outline of the theory of pseudoanalytic functions”, Bull. AMS, 62:4 (1956), 291–331 | DOI | MR

[4] B. Bojarski, “Homeomorphic solutions of the Beltrami systems”, Dokl. Akad. Nauk SSSR, 102 (1955), 661–664 (in Russian) | MR

[5] B. Bojarski, “Generalized solutions of a system of differential equations of the first order of the elliptic type with discontinuous coefficients”, Mat. Sb. (N.S.), 43(85):4 (1957), 451–503 | MR

[6] A.L. Bukhgeim, Inversion formulas in inverse problems. A supplement to M.M. Lavrent'ev and L. Ya. Savel'ev “Linear Operators and Ill-Posed Problems”, Translated from the Russian, Consultants Bureau, New York; Nauka, Moscow, 1995 | MR

[7] A.L. Bukhgeim, S.G. Kazantsev, “Elliptic systems of Beltrami type and tomography problems”, Dokl. Akad. Nauk SSSR, 42:3 (1991), 704–707 (in Russian) | MR

[8] I.N. Vekua, Generalized analytic functions, Nauka, M., 1988 (in Russian) | MR

[9] L.I. Volkovysky, Quasiconformal mappings, Lvov, 1954 (in Russian)

[10] V. Gutlyanski, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami equation: a geometric approach, Springer, 2011 | MR

[11] N.M. Jabborov, Kh.Kh. Imomnazarov, Some mixed problems of the mechanics of two-velocity media, Tashkent, 2012 (in Russian)

[12] N.M. Jabborov, T.U. Otaboev, “Cauchy's theorem for $A(z)$-analytic functions”, Uzbek Mat. Zh., 2014, no. 1, 15–18 (in Russian) | MR

[13] N.M. Jabborov, T.U. Otaboev, “An analog of the integral Cauchy theorem for $A$-analytic functions”, Uzbek Mat. Zh., 2016, no. 4, 50–59 (in Russian) | MR

[14] A. Sadullaev, N.M. Jabborov, “On a class of $A$-analitic functions”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016), 374–383 | DOI

[15] M.A. Lavrent'ev, B.V. Shabat, Methods of the Theory of Functions of a Complex Variable, Fizmatgiz, M., 1958 (in Russian) | MR

[16] A.P. Soldatov, One-dimensional singular operators and boundary value problems of the theory of functions, Vysshaya Shkola, M., 1991 (in Russian) | MR