Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_1_a2, author = {Nilangshu Acharya and Subrata Jana and Kalidas Das}, title = {Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {18--29}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a2/} }
TY - JOUR AU - Nilangshu Acharya AU - Subrata Jana AU - Kalidas Das TI - Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 18 EP - 29 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a2/ LA - en ID - JSFU_2018_11_1_a2 ER -
%0 Journal Article %A Nilangshu Acharya %A Subrata Jana %A Kalidas Das %T Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 18-29 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a2/ %G en %F JSFU_2018_11_1_a2
Nilangshu Acharya; Subrata Jana; Kalidas Das. Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 18-29. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a2/
[1] P. Cheng, W. J. Minkowycz, “Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a disk”, J. Geophys Res., 82 (1977), 2040–2044 | DOI
[2] L. F. Cai, F. A. Kulacki, “Non-Darcy mixed convection along a vertical wall in a saturated porous medium”, Int. J. Heat Mass Transf., 113 (1991), 252–255
[3] Q. Wu, S. Weinbaum, Y. Andreopoulos, “Stagnation point flows in porous medium”, Chem. Eng. Sci., 60 (2005), 123–134 | DOI
[4] J. T. Hong, Y. Yamada, C. L. Tien, “Effects of non-Darcian and non-uniform porosity on vertical plate natural convection in a porous media”, Trans. ASME Jour. Heat Transfer., 109 (1987), 356–362 | DOI
[5] K. S. Chen, J. R. Ho, “Effects of flow inertia on vertical natural convection in saturated porous media”, Int. J. Heat Mass Transf., 29 (1988), 753–759 | DOI
[6] C. K. Chen, C. H. Chen, M. W. Jinkowycz, U. S. Gill, “Non-Darcian effects on mixed convection about a vertical cylinder embedded in a saturated porous medium”, Int. J. Heat Mass Transf., 35 (1992), 3041–3046 | DOI
[7] S. C. Chen, K. Vafai, “Non-Darcian surface tension effects on free surface transport in porous media”, Numer. Heat Transfer., Part A, 31 (1997), 235–245 | DOI
[8] A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition”, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1064–1068 | DOI
[9] A. Ishak, “Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition”, Appl. Math Comput., 217 (2010), 837–842 | MR
[10] M. Sheikholeslami, A. J. Chamkha, “Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall”, Num. Heat Transfer, part A, 69:7 (2016), 781–793 | DOI
[11] M. Sheikholeslami, D. D. Ganji, “Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method”, Physica A, 417 (2015), 273–286 | DOI
[12] M. Sheikholeslami, H. R. Ashorynejad, P. Rana, “Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation”, Journal of Molecular Liquids, 214 (2016), 86–95 | DOI
[13] A. C. Cogley, W. E. Vincenty, S. E. Gilles, “Differential approximation for radiation in a non-gray gas near equilibrium”, AIAA Jour., 6 (1968), 551–553 | DOI
[14] A. Raptis, “Radiation and free convection flow through a porous medium”, Int. Commun. Heat Mass Transf., 2 (1998), 289–295 | DOI
[15] O. D. Makinde, “Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate”, Int. Comm. Heat Mass Transfer, 32 (2005), 1411–1419 | DOI
[16] A. Raptis, C. Perdikis, “Viscoelastic flow by the presence of radiation”, J. Appl. Maths and Mechs., 78 (1998), 277–279 | MR
[17] S. Mukhopadhyay, P. R. De, K. Bhattacharyya, G. C. Layek, “Forced convective flow and heat transfer over a porous plate in a Darcy-Forchheimer porous medium in presence of radiation”, Meccanica, 47 (2012), 153–161 | DOI | MR
[18] K. L. Hsiao, “Combined Electrical MHD Heat Transfer Thermal Extrusion System Using Maxwell Fluid with Radiative and Viscous Dissipation Effects”, Applied Thermal Engineering, 112 (2017) | DOI
[19] K. A. Helmy, “MHD boundary layer equations for power law fluids with variable electric conductivity”, Meccanica, 30 (1995), 187–200 | DOI | MR
[20] M. A. Seddeek, F. M. Aboeldahab, “Radiation effects on unsteady MHD free convection with Hall current near an infinite vertical porous plate”, Int. J. Maths and Mathematical sciences, 26 (2001), 249–255 | DOI | MR
[21] A. J. Chamkha, “MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction”, Int. Comm Heat Mass Transfer, 30 (2003), 413–422 | DOI | MR
[22] F. S. Ibrahim, A. M. Elaiw, A. A. Bakr, “Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids”, Appl. Math. Inf. Sci., 2 (2008), 143–162 | MR
[23] T. Hayat, Z. Abbas, I. Pop, S. Asghar, “Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium”, Int. J. Heat Mass Transfer, 53 (2010), 466–474 | DOI
[24] O. D. Makinde, A. Aziz, “MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition”, Int. Jour. Therm. Sci., 49 (2010), 1813–1820 | DOI | MR
[25] B. I. Olajuwon, “Convection heat and mass transfer in a hydromagnetic flow of a second grade fluid in the presence of thermal radiation and thermal diffusion”, Int. Comm. Heat Mass Trans., 38 (2011), 377–382 | DOI
[26] K. Das, “Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties”, Heat Mass and Transfer, 48 (2012), 767–778 | DOI
[27] M. S. Kandelousi, “Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition”, The Eur. Physical J. Plus., 2014, 129–248
[28] M. Sheikholeslami, K. Vajravelu, M. M. Rashidi, “Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field”, International Journal of Heat and Mass Transf., 92 (2016), 339–348 | DOI
[29] M. Sheikholeslami, T. Hayat, A. Alsaedi, “MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study”, Int. J. of Heat and Mass Transf., 96 (2016), 513–524 | DOI
[30] M. Sheikholeslami, D. D. Ganji, M. Y. Javed, R. Ellahi, “Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model”, Journal of Magnetism and Magnetic Materials, 374 (2015), 36–43 | DOI
[31] B. Gebhart, “Effect of viscous dissipation in natural convection”, J. Fluid Mech., 14 (1962), 225–232 | DOI | MR
[32] B. Gebhart, J. Mollendorf, “Viscous dissipation in external natural convection flows”, J. Fluid Mech., 38 (1969), 97–107 | DOI
[33] K. Vajravelu, A. Hadjinicolaou, “Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation”, Int. Commun. Heat Mass Transfer, 20 (1993), 417–430 | DOI
[34] K. Jafar, R. Nazar, A. Ishak, I. Pop, “MHD Flow and Heat Transfer over stretching shrinking sheets with external magnetic field, viscous dissipation and Joule Effects”, Can. J. Chem. Eng., 99 (2011), 1–11
[35] M. S. Abel, K. A. Kumar, R. Ravikumara, “MHD Flow and Heat Transfer with Effects of Buoyancy, Viscous and Joules Dissipation over a Nonlinear Vertical Stretching Porous Sheet with Partial Slip”, Sci. Res. Engineering, 3 (2011), 285–291