Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work investigates the influence of transverse magnetic field on forced convective flow and heat transfer of an incompressible electrically conducting fluid past a semi-infinite porous plate embedded in a Darcy–Forchheimer porous medium. Thermal radiation and viscous dissipation are considered in energy equation. The resulting mathematical model of the differential equations are converted into a set of coupled non-linear ordinary differential equations by using similarity transformations and then solved numerically by employing fourth order RK-method with shooting technique. The local skin friction coefficient and Nusselt number are computed, graphical results for the dimensionless velocity and temperature field are reported and examined for some pertinent parameters showing the interacting aspects of the obtained solution.
Keywords: forced convective flow, porous medium, thermal radiation, magnetic field
Mots-clés : viscous dissipation.
@article{JSFU_2018_11_1_a2,
     author = {Nilangshu Acharya and Subrata Jana and Kalidas Das},
     title = {Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {18--29},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a2/}
}
TY  - JOUR
AU  - Nilangshu Acharya
AU  - Subrata Jana
AU  - Kalidas Das
TI  - Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 18
EP  - 29
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a2/
LA  - en
ID  - JSFU_2018_11_1_a2
ER  - 
%0 Journal Article
%A Nilangshu Acharya
%A Subrata Jana
%A Kalidas Das
%T Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 18-29
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a2/
%G en
%F JSFU_2018_11_1_a2
Nilangshu Acharya; Subrata Jana; Kalidas Das. Impact of transverse magnetic field thermal radiation on non-darcy forced convection flow. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 18-29. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a2/

[1] P. Cheng, W. J. Minkowycz, “Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a disk”, J. Geophys Res., 82 (1977), 2040–2044 | DOI

[2] L. F. Cai, F. A. Kulacki, “Non-Darcy mixed convection along a vertical wall in a saturated porous medium”, Int. J. Heat Mass Transf., 113 (1991), 252–255

[3] Q. Wu, S. Weinbaum, Y. Andreopoulos, “Stagnation point flows in porous medium”, Chem. Eng. Sci., 60 (2005), 123–134 | DOI

[4] J. T. Hong, Y. Yamada, C. L. Tien, “Effects of non-Darcian and non-uniform porosity on vertical plate natural convection in a porous media”, Trans. ASME Jour. Heat Transfer., 109 (1987), 356–362 | DOI

[5] K. S. Chen, J. R. Ho, “Effects of flow inertia on vertical natural convection in saturated porous media”, Int. J. Heat Mass Transf., 29 (1988), 753–759 | DOI

[6] C. K. Chen, C. H. Chen, M. W. Jinkowycz, U. S. Gill, “Non-Darcian effects on mixed convection about a vertical cylinder embedded in a saturated porous medium”, Int. J. Heat Mass Transf., 35 (1992), 3041–3046 | DOI

[7] S. C. Chen, K. Vafai, “Non-Darcian surface tension effects on free surface transport in porous media”, Numer. Heat Transfer., Part A, 31 (1997), 235–245 | DOI

[8] A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition”, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1064–1068 | DOI

[9] A. Ishak, “Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition”, Appl. Math Comput., 217 (2010), 837–842 | MR

[10] M. Sheikholeslami, A. J. Chamkha, “Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall”, Num. Heat Transfer, part A, 69:7 (2016), 781–793 | DOI

[11] M. Sheikholeslami, D. D. Ganji, “Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method”, Physica A, 417 (2015), 273–286 | DOI

[12] M. Sheikholeslami, H. R. Ashorynejad, P. Rana, “Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation”, Journal of Molecular Liquids, 214 (2016), 86–95 | DOI

[13] A. C. Cogley, W. E. Vincenty, S. E. Gilles, “Differential approximation for radiation in a non-gray gas near equilibrium”, AIAA Jour., 6 (1968), 551–553 | DOI

[14] A. Raptis, “Radiation and free convection flow through a porous medium”, Int. Commun. Heat Mass Transf., 2 (1998), 289–295 | DOI

[15] O. D. Makinde, “Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate”, Int. Comm. Heat Mass Transfer, 32 (2005), 1411–1419 | DOI

[16] A. Raptis, C. Perdikis, “Viscoelastic flow by the presence of radiation”, J. Appl. Maths and Mechs., 78 (1998), 277–279 | MR

[17] S. Mukhopadhyay, P. R. De, K. Bhattacharyya, G. C. Layek, “Forced convective flow and heat transfer over a porous plate in a Darcy-Forchheimer porous medium in presence of radiation”, Meccanica, 47 (2012), 153–161 | DOI | MR

[18] K. L. Hsiao, “Combined Electrical MHD Heat Transfer Thermal Extrusion System Using Maxwell Fluid with Radiative and Viscous Dissipation Effects”, Applied Thermal Engineering, 112 (2017) | DOI

[19] K. A. Helmy, “MHD boundary layer equations for power law fluids with variable electric conductivity”, Meccanica, 30 (1995), 187–200 | DOI | MR

[20] M. A. Seddeek, F. M. Aboeldahab, “Radiation effects on unsteady MHD free convection with Hall current near an infinite vertical porous plate”, Int. J. Maths and Mathematical sciences, 26 (2001), 249–255 | DOI | MR

[21] A. J. Chamkha, “MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction”, Int. Comm Heat Mass Transfer, 30 (2003), 413–422 | DOI | MR

[22] F. S. Ibrahim, A. M. Elaiw, A. A. Bakr, “Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids”, Appl. Math. Inf. Sci., 2 (2008), 143–162 | MR

[23] T. Hayat, Z. Abbas, I. Pop, S. Asghar, “Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium”, Int. J. Heat Mass Transfer, 53 (2010), 466–474 | DOI

[24] O. D. Makinde, A. Aziz, “MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition”, Int. Jour. Therm. Sci., 49 (2010), 1813–1820 | DOI | MR

[25] B. I. Olajuwon, “Convection heat and mass transfer in a hydromagnetic flow of a second grade fluid in the presence of thermal radiation and thermal diffusion”, Int. Comm. Heat Mass Trans., 38 (2011), 377–382 | DOI

[26] K. Das, “Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties”, Heat Mass and Transfer, 48 (2012), 767–778 | DOI

[27] M. S. Kandelousi, “Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition”, The Eur. Physical J. Plus., 2014, 129–248

[28] M. Sheikholeslami, K. Vajravelu, M. M. Rashidi, “Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field”, International Journal of Heat and Mass Transf., 92 (2016), 339–348 | DOI

[29] M. Sheikholeslami, T. Hayat, A. Alsaedi, “MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study”, Int. J. of Heat and Mass Transf., 96 (2016), 513–524 | DOI

[30] M. Sheikholeslami, D. D. Ganji, M. Y. Javed, R. Ellahi, “Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model”, Journal of Magnetism and Magnetic Materials, 374 (2015), 36–43 | DOI

[31] B. Gebhart, “Effect of viscous dissipation in natural convection”, J. Fluid Mech., 14 (1962), 225–232 | DOI | MR

[32] B. Gebhart, J. Mollendorf, “Viscous dissipation in external natural convection flows”, J. Fluid Mech., 38 (1969), 97–107 | DOI

[33] K. Vajravelu, A. Hadjinicolaou, “Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation”, Int. Commun. Heat Mass Transfer, 20 (1993), 417–430 | DOI

[34] K. Jafar, R. Nazar, A. Ishak, I. Pop, “MHD Flow and Heat Transfer over stretching shrinking sheets with external magnetic field, viscous dissipation and Joule Effects”, Can. J. Chem. Eng., 99 (2011), 1–11

[35] M. S. Abel, K. A. Kumar, R. Ravikumara, “MHD Flow and Heat Transfer with Effects of Buoyancy, Viscous and Joules Dissipation over a Nonlinear Vertical Stretching Porous Sheet with Partial Slip”, Sci. Res. Engineering, 3 (2011), 285–291