On a sufficient condition when an infinite group is not simple
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 103-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the conditions of existing periodic part in Shunkov group.
Keywords: Shunkov group, groups saturated by given set of groups.
@article{JSFU_2018_11_1_a14,
     author = {Aleksei A. Shlepkin},
     title = {On a sufficient condition when an infinite group is not simple},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {103--107},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a14/}
}
TY  - JOUR
AU  - Aleksei A. Shlepkin
TI  - On a sufficient condition when an infinite group is not simple
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 103
EP  - 107
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a14/
LA  - en
ID  - JSFU_2018_11_1_a14
ER  - 
%0 Journal Article
%A Aleksei A. Shlepkin
%T On a sufficient condition when an infinite group is not simple
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 103-107
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a14/
%G en
%F JSFU_2018_11_1_a14
Aleksei A. Shlepkin. On a sufficient condition when an infinite group is not simple. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 103-107. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a14/

[1] R. Brauer, “On structure of groups of finite order”, Proceedings of the International Congress of Mathematicians (1954), 209–217 | MR

[2] V.V. Belyaev, “On groups with almost regular involution”, Algebra i logika, 26:5 (1987), 521–535 (in Russian) | DOI | MR

[3] R. Brauer, “On the structure of groups of finite order”, Proceedings of the International Congress of Mathematicians (1954), 209–217 | MR

[4] A.A. Cherep, “On elements of finite order in biprimitively finite groups”, Algebra i logika, 26 (1987), 518–521 (in Russian) | DOI | MR

[5] A.P. Ditsman, “On the center of $ p $-groups”, Trudy seminara po teorii grup (Moscow, 1938), 30–34 (in Russian)

[6] M.I. Kargapolov, Yu.I. Merzlyakov, Fundamentals of Group Theory, Nauka, M., 1982 (in Russian) | MR

[7] A.A. Kuznetsov, K.A. Filippov, “Groups saturated by sets of groups”, Sib. electr. mat. izv., 8 (2011), 230–246 (in Russian) | MR

[8] V.D. Mazurov, “On the set of orders of elements of a finite group”, Algebra i logika, 8:1 (1994), 81–89 (in Russian) | MR

[9] A.N. Ostylovsky, V.P. Shunkov, “On the local finiteness of a class of groups with the minimality condition”, Izuch. teorii grup (Krasnoyarsk, 1975), 32–48 (in Russian) | MR

[10] V.I. Senashov, V.P. Shunkov, Groups with finiteness conditions, Izdatel'stvo SB RAN, Novosibirsk, 2001 (in Russian) | MR

[11] A.I. Sozutov, “On groups with almost perfect involution”, Tr. IMM UrB RAS, 13, no. 1, 2007, 183–190 (in Russian) | MR

[12] A.K. Shlepkin, “Conjugately double-primitive finite groups containing finite unsolvable subgroups”, Third Intern. Conf. In algebra, Sat. Tez. (August 23–28, 1993) (in Russian)

[13] A.K. Shlepkin, “On conjugately biprimitively finite groups with a primary minimum condition”, Algebra i logika, 22 (1983), 226–231 (in Russian) | DOI | MR

[14] V.P. Shunkov, “On periodic groups with almost regular involution”, Algebra i logika, 4 (1972), 470–493 (in Russian) | MR

[15] V.P. Shunkov, “On a class of groups with involutions ($T_0$-groups)”, Mat. Raboty, 1:1 (1998), 139–202 (in Russian) | MR