On applications of the Cayley graphs of some finite groups of exponent five
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 70-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_0(2,5)$ be the largest two–generator finite Burnside group of exponent five. It has the order $5^{34}$. We define an automorphism $\varphi$ which translates generating elements into their inverses. Let $C_{B_0(2,5)}(\varphi)$ be the centralizer of $\varphi$ in $B_0(2,5)$. It is known that $|C_{B_0(2,5)}(\varphi)|=5^{16}$. The growth functions of the centralizer are computed for some generating sets in the article. As the result we got diameters and average diameters of corresponding the Cayley graphs of $C_{B_0(2,5(\varphi)}$.
Keywords: periodic group, collection process, Hall’s polynomials, the Cayley graph, multiprocessor computer system.
@article{JSFU_2018_11_1_a10,
     author = {Alexander A. Kuznetsov and Konstantin V. Safonov},
     title = {On applications of the {Cayley} graphs of some finite groups of exponent five},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {70--78},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a10/}
}
TY  - JOUR
AU  - Alexander A. Kuznetsov
AU  - Konstantin V. Safonov
TI  - On applications of the Cayley graphs of some finite groups of exponent five
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 70
EP  - 78
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a10/
LA  - en
ID  - JSFU_2018_11_1_a10
ER  - 
%0 Journal Article
%A Alexander A. Kuznetsov
%A Konstantin V. Safonov
%T On applications of the Cayley graphs of some finite groups of exponent five
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 70-78
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a10/
%G en
%F JSFU_2018_11_1_a10
Alexander A. Kuznetsov; Konstantin V. Safonov. On applications of the Cayley graphs of some finite groups of exponent five. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 70-78. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a10/

[1] S. Even, O. Goldreich, “The Minimum Length Generator Sequence is NP–Hard”, J. of Algorithms, 2:3 (1981), 311–313 | DOI | MR

[2] A. A. Kuznetsov, A. S. Kuznetsova, “A parallel algorithm for study of the Cayley graphs of permutation groups”, Vestnik SibGAU, 53:1 (2014), 34–39 (in Russian) | MR

[3] S. Akers, B. Krishnamurthy, “A group theoretic model for symmetric interconnection networks”, Proceedings of the International Conference on Parallel Processing, 1986, 216–223

[4] D. Holt, B. Eick, E. O'Brien, Handbook of computational group theory, Chapman $\$ Hall/CRC Press, Boca Raton | MR

[5] M. Camelo, D. Papadimitriou, L. Fàbrega, P. Vilà, “Efficient Routing in Data Center with Underlying Cayley Graph”, Proceedings of the 5th Workshop on Complex Networks Comple Net, 2014, 189–197

[6] A. A. Kuznetsov, “The Cayley graphs of Burnside groups of exponent 3”, Sib. Elektron. Math. Izv., 12 (2015), 248–254 (in Russian) | MR

[7] A. A. Kuznetsov, A. S. Kuznetsova, “Perspective topologies of multiprocessor computing systems based on the Cayley graphs of groups of period 4”, Vestnik SibGAU, 17:3 (2016), 34–39 (in Russian) | MR

[8] G. Havas, G. Wall, J. Wamsley, “The two generator restricted Burnside group of exponent five”, Bull. Austral. Math. Soc., 10 (1974), 459–470 | DOI | MR

[9] C. Sims, Computation with finitely presented groups, Cambridge University Press, Cambridge, 1994 | MR

[10] A. A. Kuznetsov, “An algorithm for computation of the growth functions in finite two-generated groups of exponent 5”, Prikl. Diskr. Math., 33:3 (2016), 116–125 (in Russian) | MR

[11] A. A. Kuznetsov, K. A. Filippov, “On an involutive automorphism of the Burnside group $B_0(2,5)$”, Sib. Zh. Ind. Math., 13:3 (2010), 68–75 (in Russian) | MR

[12] V. P. Shunkov, “On periodic groups with almost regular involution”, Algebra i Logika, 11:4 (1972), 470–494 (in Russian) | DOI | MR

[13] Ph. Hall, “Nilpotent groups”, Notes of lectures given at the Canadian Mathematical Congress 1957 Summer Seminar, The collected works of Philip Hall, Clarendon Press, Oxford, 1988, 415–462 | MR

[14] A. A. Kuznetsov, A. S. Kuznetsova, “Fast multiplication in finite two-generated groups of exponent five”, Prikl. Diskr. Math., 18:1 (2013), 110–116 (in Russian)

[15] A. A. Kuznetsov, K. V. Safonov, “Hall's polynomials of finite two-generator groups of exponent seven”, J. Sib. Fed. Univ. Math. Phys., 7:2 (2014), 186–190