Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_4_a6, author = {Ekaterina M. Muzalevskaya}, title = {Coamoebas of discriminants of tetranomials}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {456--462}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a6/} }
TY - JOUR AU - Ekaterina M. Muzalevskaya TI - Coamoebas of discriminants of tetranomials JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 456 EP - 462 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a6/ LA - en ID - JSFU_2017_10_4_a6 ER -
Ekaterina M. Muzalevskaya. Coamoebas of discriminants of tetranomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 456-462. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a6/
[1] M. Passare, A. K. Tsikh, “Algebraic equations and hypergeometric series”, The Legacy of Niels Henrik Abel, Springer-Verlag, Berlin, 2004, 653–672 | DOI | MR | Zbl
[2] L. Nilsson, M. Passare, “Discriminant coamoebas in dimension two”, Journal of Commutative Algebra, 2:4 (2010), 447–471 | DOI | MR | Zbl
[3] I. A. Antipova, E. N. Mikhalkin, “Analytic continuations of a general algebraic function by means of Puiseux series”, Proceedings of the Steklov Institute of Mathematics, 279 (2012), 3–13 | DOI | MR | Zbl
[4] I. A. Antipova, T. V. Zykova, “On the Set of Convergence for Mellin–Barnes Integral Representing Solutions to the Tetranomial Algebraic Equation”, J. of Siberian Federal University, Mathematics and Physics, 3:4 (2010), 475–486 (in Russian)