Coamoebas of discriminants of tetranomials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 456-462.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of construction of a coamoeba for a discriminant of a general tetranomial equatio is presented.
Keywords: coamoeba
Mots-clés : discriminant, tetranomial.
@article{JSFU_2017_10_4_a6,
     author = {Ekaterina M. Muzalevskaya},
     title = {Coamoebas of discriminants of tetranomials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {456--462},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a6/}
}
TY  - JOUR
AU  - Ekaterina M. Muzalevskaya
TI  - Coamoebas of discriminants of tetranomials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 456
EP  - 462
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a6/
LA  - en
ID  - JSFU_2017_10_4_a6
ER  - 
%0 Journal Article
%A Ekaterina M. Muzalevskaya
%T Coamoebas of discriminants of tetranomials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 456-462
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a6/
%G en
%F JSFU_2017_10_4_a6
Ekaterina M. Muzalevskaya. Coamoebas of discriminants of tetranomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 456-462. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a6/

[1] M. Passare, A. K. Tsikh, “Algebraic equations and hypergeometric series”, The Legacy of Niels Henrik Abel, Springer-Verlag, Berlin, 2004, 653–672 | DOI | MR | Zbl

[2] L. Nilsson, M. Passare, “Discriminant coamoebas in dimension two”, Journal of Commutative Algebra, 2:4 (2010), 447–471 | DOI | MR | Zbl

[3] I. A. Antipova, E. N. Mikhalkin, “Analytic continuations of a general algebraic function by means of Puiseux series”, Proceedings of the Steklov Institute of Mathematics, 279 (2012), 3–13 | DOI | MR | Zbl

[4] I. A. Antipova, T. V. Zykova, “On the Set of Convergence for Mellin–Barnes Integral Representing Solutions to the Tetranomial Algebraic Equation”, J. of Siberian Federal University, Mathematics and Physics, 3:4 (2010), 475–486 (in Russian)