A refinement of Kovalevskaya's theorem on analytic solvability of the Cauchy problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 531-536.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give a proof of an analog of the Kovalevskaya theorem about analytic solvability of the Cauchy problem for a linear differential equation with constant coefficients. A major role in the proof is played by the Borel transform and the Laurent expansion of the function $P^{-1}$, where $P$ is the characteristic polynomial. This expansion produces an efficiently computable approximation of the solution of the Cauchy problem. The method of the proof allows to consider equations not necessarily resolved with respect to the highest derivative, however it imposes additional restrictions on the right hand side.
Keywords: Cauchy problem, Newton polytope
Mots-clés : Borel transform, Laurent expansion.
@article{JSFU_2017_10_4_a14,
     author = {Alexander A. Znamenskiy},
     title = {A refinement of {Kovalevskaya's} theorem on analytic solvability of the {Cauchy} problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {531--536},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a14/}
}
TY  - JOUR
AU  - Alexander A. Znamenskiy
TI  - A refinement of Kovalevskaya's theorem on analytic solvability of the Cauchy problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 531
EP  - 536
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a14/
LA  - en
ID  - JSFU_2017_10_4_a14
ER  - 
%0 Journal Article
%A Alexander A. Znamenskiy
%T A refinement of Kovalevskaya's theorem on analytic solvability of the Cauchy problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 531-536
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a14/
%G en
%F JSFU_2017_10_4_a14
Alexander A. Znamenskiy. A refinement of Kovalevskaya's theorem on analytic solvability of the Cauchy problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 531-536. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a14/

[1] Sophie von Kowalevsky, “Zur Theorie der partiellen Differentialgleiehungen”, Journal für Mathematik, LXXX:1 (1874) | MR

[2] Yu. F. Korobeinik, “Representative systems of exponentials and the Cauchy problem for partial differential equations with constant coefficients”, Izvestiya: Mathematics, 61:3 (1997), 553–592 | DOI | MR | Zbl

[3] E. Leinartas, “The Cauchy problem in a class of entire functions in several variables”, Banach Center Publications, 33:1 (1996), 189–192 | DOI | MR | Zbl

[4] L. I. Ronkin, Introduction to the theory of entire functions of several variables, Translations of Mathematical Monographs, 1974 | MR

[5] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR

[6] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. II, Differential Operators with Constant Coefficients, 2005 | MR