@article{JSFU_2017_10_4_a1,
author = {Vladislav V. Branishti},
title = {On some properties of weighted {Hilbert} spaces},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {410--421},
year = {2017},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a1/}
}
Vladislav V. Branishti. On some properties of weighted Hilbert spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 410-421. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a1/
[1] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publications, Inc., 1999 | MR
[2] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, 1982 | MR | Zbl
[3] H. Triebel, Theory of function spaces, Akademische Verlagsgesellschaft Geest Portig K.-G., Leipzig, 1983 | MR | Zbl
[4] J. Garcia-Cuerva, K. S. Kazarian, “Spline wavelet bases of weighted $ L^p $ spaces, $ 1 \le p \infty $”, Proceedings of the American Mathematical Society, 123:2 (1995), 433–439 | DOI | MR | Zbl
[5] K. S. Kazarian, S. S. Kazaryan, A. San Antolín, Wavelets in weighted norm spaces, 2014, arXiv: 1410.4888
[6] V. V. Branishti, “Introducing the $L_{2,w}$ space for building the projective estimation of probability density function”, Vestnik SibGAU, 17:1 (2016), 19–26 (in Russian)