On some properties of weighted Hilbert spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 410-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the weighted Hilbert spaces $ L_{2,w}(\Omega) $ with positive weight functions $ w(x) $ which are summable on every bounded interval. We give sufficient condition for $ L_{2,w_1}(\Omega) $ space to be extension of $ L_{2,w_2}(\Omega) $ space. We also describe how to use given result in statistical probability density estimation.
Keywords: integrable function spaces, Hilbert spaces, weighted function spaces, second order splines, probability density function estimating.
@article{JSFU_2017_10_4_a1,
     author = {Vladislav V. Branishti},
     title = {On some properties of weighted {Hilbert} spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {410--421},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a1/}
}
TY  - JOUR
AU  - Vladislav V. Branishti
TI  - On some properties of weighted Hilbert spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 410
EP  - 421
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a1/
LA  - en
ID  - JSFU_2017_10_4_a1
ER  - 
%0 Journal Article
%A Vladislav V. Branishti
%T On some properties of weighted Hilbert spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 410-421
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a1/
%G en
%F JSFU_2017_10_4_a1
Vladislav V. Branishti. On some properties of weighted Hilbert spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 410-421. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a1/

[1] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publications, Inc., 1999 | MR

[2] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, 1982 | MR | Zbl

[3] H. Triebel, Theory of function spaces, Akademische Verlagsgesellschaft Geest Portig K.-G., Leipzig, 1983 | MR | Zbl

[4] J. Garcia-Cuerva, K. S. Kazarian, “Spline wavelet bases of weighted $ L^p $ spaces, $ 1 \le p \infty $”, Proceedings of the American Mathematical Society, 123:2 (1995), 433–439 | DOI | MR | Zbl

[5] K. S. Kazarian, S. S. Kazaryan, A. San Antolín, Wavelets in weighted norm spaces, 2014, arXiv: 1410.4888

[6] V. V. Branishti, “Introducing the $L_{2,w}$ space for building the projective estimation of probability density function”, Vestnik SibGAU, 17:1 (2016), 19–26 (in Russian)