Equationally extremal semilattices
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 298-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the current paper we study extremal semilattices with respect to their equational properties. In the class $\mathbf{S}_n$ of all semilattices of order $n$ we find semilattices which have maximal (minimal) number of consistent equations. Moreover, we find a semilattice in $\mathbf{S}_n$ with maximal sum of numbers of solutions of equations.
Keywords: semilattice, consistency, universal algebraic geometry.
Mots-clés : equation, solutions
@article{JSFU_2017_10_3_a4,
     author = {Artem N. Shevlyakov},
     title = {Equationally extremal semilattices},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {298--304},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a4/}
}
TY  - JOUR
AU  - Artem N. Shevlyakov
TI  - Equationally extremal semilattices
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 298
EP  - 304
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a4/
LA  - en
ID  - JSFU_2017_10_3_a4
ER  - 
%0 Journal Article
%A Artem N. Shevlyakov
%T Equationally extremal semilattices
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 298-304
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a4/
%G en
%F JSFU_2017_10_3_a4
Artem N. Shevlyakov. Equationally extremal semilattices. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 298-304. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a4/

[1] A. Shevlyakov, “Equivalent equations in semilattices”, Sib. Electron. Mat. Izv., 13 (2016), 478–490 (in Russian) | MR | Zbl