Equationally extremal semilattices
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 298-304
Voir la notice de l'article provenant de la source Math-Net.Ru
In the current paper we study extremal semilattices with respect to their equational properties. In the class $\mathbf{S}_n$ of all semilattices of order $n$ we find semilattices which have maximal (minimal) number of consistent equations. Moreover, we find a semilattice in $\mathbf{S}_n$ with maximal sum of numbers of solutions of equations.
Keywords:
semilattice, consistency, universal algebraic geometry.
Mots-clés : equation, solutions
Mots-clés : equation, solutions
@article{JSFU_2017_10_3_a4,
author = {Artem N. Shevlyakov},
title = {Equationally extremal semilattices},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {298--304},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a4/}
}
Artem N. Shevlyakov. Equationally extremal semilattices. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 298-304. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a4/