On local solvability of the system of the equations of one dimensional motion of magma
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 385-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local solvability of initial-boundary value problem for the system of the equations of non stationary motion of magma is proved.
Keywords: Darcy law, poroelastisity, solvability, uniqueness.
Mots-clés : magma
@article{JSFU_2017_10_3_a16,
     author = {Alexander A. Papin and Margarita A. Tokareva},
     title = {On local solvability of the system of the equations of one dimensional motion of magma},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {385--395},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a16/}
}
TY  - JOUR
AU  - Alexander A. Papin
AU  - Margarita A. Tokareva
TI  - On local solvability of the system of the equations of one dimensional motion of magma
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 385
EP  - 395
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a16/
LA  - en
ID  - JSFU_2017_10_3_a16
ER  - 
%0 Journal Article
%A Alexander A. Papin
%A Margarita A. Tokareva
%T On local solvability of the system of the equations of one dimensional motion of magma
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 385-395
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a16/
%G en
%F JSFU_2017_10_3_a16
Alexander A. Papin; Margarita A. Tokareva. On local solvability of the system of the equations of one dimensional motion of magma. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 385-395. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a16/

[1] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972 | Zbl

[2] J. A. D. Connolly, Y. Y. Podladchikov, “Compaction-driven fluid flow in viscoelastic rock”, Geodin. Acta, 11 (1998), 55–84. | DOI

[3] C. Morency, R. S. Huismans, C. Beaumont, P. Fullsack, “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, Journal of Geophysical Research, 112 (2007), B10407 | DOI

[4] I. G. Akhmerova, A. A. Papin, M. A. Tokareva, Mathematical models of heterogeneous media, v. 1, Altai Gos. Univ., Barnaul, 2012 (in Russian)

[5] M. Simpson, M. Spiegelman, M. I. Weinstein, “Degenerate dispersive equations arising in the stady of magma dynamics”, Nonlinearity, 20 (2007), 21–49 | DOI | MR | Zbl

[6] A. M. Abourabia, K. M. Hassan, A. M. Morad, “Analytical solutions of the magma equations for molten rocks in a granular matrix”, Chaos Solutions Fract., 42 (2009), 1170–1180 | DOI | Zbl

[7] Y. Geng, L. Zhang, “Bifurcations of traveling wave solutions for the magma equation”, Applied Mathematics and computation, 217 (2010), 1741–1748 | DOI | MR | Zbl

[8] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (in Russian) | MR | Zbl

[9] A. A. Papin, I. G. Akhmerova, “Solvability of the system of equations of one-dimensional motion of a heat-conducting two-phase mixture”, Mathematical Notes, 87:2 (2010), 230–243 | DOI | MR | Zbl

[10] R. Edwards, Functional Analysis: Theory and Applications, New York, 1965 | MR

[11] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary-Value Problems of the Mechanics of Inhomogeneous Fluids, Nauka, Sibirskoe Otdelenie, Novosibirsk, 1983 (in Russian) | MR | Zbl