Construction of series of perfect lattices by layer superposition
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 353-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a new series of perfect lattices in $n$ dimensions by the layer superposition method of Delaunay–Barnes.
Keywords: lattice packing and covering, polyhedra and polytopes, regular figures, division of spaces.
@article{JSFU_2017_10_3_a13,
     author = {Sergey B. Vasiliev and Nikolai Tarkhanov},
     title = {Construction of series of perfect lattices by layer superposition},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {353--361},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a13/}
}
TY  - JOUR
AU  - Sergey B. Vasiliev
AU  - Nikolai Tarkhanov
TI  - Construction of series of perfect lattices by layer superposition
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 353
EP  - 361
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a13/
LA  - en
ID  - JSFU_2017_10_3_a13
ER  - 
%0 Journal Article
%A Sergey B. Vasiliev
%A Nikolai Tarkhanov
%T Construction of series of perfect lattices by layer superposition
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 353-361
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a13/
%G en
%F JSFU_2017_10_3_a13
Sergey B. Vasiliev; Nikolai Tarkhanov. Construction of series of perfect lattices by layer superposition. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 353-361. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a13/

[1] E.P. Baranovskii, “Simplices of $L\,$-subdivisions of Euclidean spaces”, Math. Notes, 10:6 (1971), 827–834 | DOI | MR

[2] E.P. Baranovskii, “Decompositions of Euclidean spaces into $L\,$-polytopes of some perfect lattices”, Proc. Steklov Inst. Math., 196, 1992, 29–51 | MR

[3] S.S. Ryshkov, E.P. Baranovskii, “$C\,$-Types of $n\,$-dimensional lattices and $5\,$-dimensional primitive polytopes (with application to the theory of coverings)”, Proc. Steklov Inst. Math., 137, 1976, 1–140 | MR

[4] Baranovskii E. P., Ryshkov S. S., “Perfect lattices as admissible centerings”, Soviet Math., 37:4 (1987), 1155–1183 | DOI

[5] E.S. Barnes, “The construction of perfect and extreme forms”, Acta Arithm., 5:1 (1959), 57–79 ; 2, 205–222 | MR | Zbl | Zbl

[6] B. N. Delaunay, “On the densest parallelepipedal configuration of balls in the spaces of dimension $3$ and $4$”, Trans. of Phys. Math. Inst., 4 (1933), 63–65

[7] P. M. Gruber, C. G. Lekkerkerker, Geometry of Numbers, second edition, Elsevier Science Publishers B. V., Amsterdam, NL, 1987 | MR

[8] S. B. Vasiliev, “On a new series of perfect forms”, Mathematics i ee prilozheniya. Univ. Ivanovo, 2004, no. 1, 37–41 (in Russian)

[9] G. F. Voronoy, “Nouvelles applications de paramètres contenues à la théorie de formes quadratiques – Deuxième mémoire”, J. für reine und angewandte Mathematik, 134 (1908), 198–287 ; 136 (1909), 67–178 | MR