Centralizers of finite $p$-subgroups in simple locally finite groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 281-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

We are interested in the following questions of B. Hartley: (1) Is it true that, in an infinite, simple locally finite group, if the centralizer of a finite subgroup is linear, then $G$ is linear? (2) For a finite subgroup $F$ of a non-linear simple locally finite group is the order $|CG(F)|$ infinite? We prove the following: Let $G$ be a non-linear simple locally finite group which has a Kegel sequence $\mathcal{K}=\{(G_{i},1): \; i \in \mathbf{N} \}$ consisting of finite simple subgroups. Let $p$ be a fixed prime and $s\in \mathbf{N}$. Then for any finite $p-$subgroup $F$ of $G$, the centralizer $C_{G}(F)$ contains subgroups isomorphic to the homomorphic images of $SL(s,\mathbf{F}_q)$. In particular $C_G(F)$ is a non-linear group. We also show that if $F$ is a finite $p$-subgroup of the infinite locally finite simple group $G$ of classical type and given $s\in \mathbf{N}$ and the rank of $G$ is sufficiently large with respect to $|F|$ and $s$, then $C_G(F)$ contains subgroups which are isomorphic to homomorphic images of $SL(s,K)$.
Keywords: centralizer, simple locally finite, non-linear group.
@article{JSFU_2017_10_3_a1,
     author = {Mahmut Kuzucuo\u{g}lu},
     title = {Centralizers of finite $p$-subgroups in simple locally finite groups},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {281--286},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a1/}
}
TY  - JOUR
AU  - Mahmut Kuzucuoğlu
TI  - Centralizers of finite $p$-subgroups in simple locally finite groups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 281
EP  - 286
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a1/
LA  - en
ID  - JSFU_2017_10_3_a1
ER  - 
%0 Journal Article
%A Mahmut Kuzucuoğlu
%T Centralizers of finite $p$-subgroups in simple locally finite groups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 281-286
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a1/
%G en
%F JSFU_2017_10_3_a1
Mahmut Kuzucuoğlu. Centralizers of finite $p$-subgroups in simple locally finite groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 281-286. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a1/

[1] K. Ersoy, M. Kuzucuoğlu, “Centralizers of subgroups in simple locally finite groups”, J. Group Theory, 15:1 (2012), 9–22 | DOI | MR | Zbl

[2] B. Hartley, “Centralizing Properties in Simple Locally Finite Groups and Large Finite Classical Groups”, J. Austral. Math. Soc. (Series A), 49 (1990), 502–513 | DOI | MR | Zbl

[3] B. Hartley, M. Kuzucuoğlu, “Centralizers of elements in locally finite simple groups”, Proc. London Math. Soc., 62:3 (1991), 301–324 | DOI | MR | Zbl

[4] J. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, AMS, 1995 | MR | Zbl

[5] M. Kuzucuoğlu, “Centralizers of semisimple subgroups in locally finite simple groups”, Rend. Sem. Mat. Univ. Padova, 92 (1994), 79–90 | MR | Zbl

[6] M. Kuzucuoğlu, “Centralizers in simple locally finite groups”, International Journal of Group Theor., 02:1 (2012), 1–10 | MR

[7] U. Meierfrankenfeld, “Locally Finite Simple Group with a $p$-group as centralizer”, Turkish J. Math., 31 (2007), 95–103 | MR | Zbl

[8] T. A. Springer, R. Steinberg, Conjugacy Classes in Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math., 131, Springer-Verlag, Berlin, 1970 | MR