A class of Toeplitz operators in several complex variables
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 206-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to study the Toeplitz algebras related to a Dirac operators in a neighborhood of a closed bounded domain $\mathcal{D}$ with smooth boundary in $\mathbb{C}^n$ we introduce a singular Cauchy type integral. We compute its principal symbol, thus initiating the index theory.
Keywords: Dirac operators, Cauchy type integral, Toeplitz operators, index.
Mots-clés : symbol
@article{JSFU_2017_10_2_a7,
     author = {Dmitrii P. Fedchenko},
     title = {A class of {Toeplitz} operators in several complex variables},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {206--215},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a7/}
}
TY  - JOUR
AU  - Dmitrii P. Fedchenko
TI  - A class of Toeplitz operators in several complex variables
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 206
EP  - 215
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a7/
LA  - en
ID  - JSFU_2017_10_2_a7
ER  - 
%0 Journal Article
%A Dmitrii P. Fedchenko
%T A class of Toeplitz operators in several complex variables
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 206-215
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a7/
%G en
%F JSFU_2017_10_2_a7
Dmitrii P. Fedchenko. A class of Toeplitz operators in several complex variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 206-215. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a7/

[1] U. Venugopalkrishna, “Fredholm operators associated with strongly pseudoconvex domains in $\mathbb{C}^n$”, J. Funct. Analysis, 9 (1972), 349–373 | DOI | MR | Zbl

[2] R. Douglas, Banach algebra techniques in the theory of Toeplitz operators, SBMS Regional Conference Series in Math., AMS, Providence, R.I., 1973 | DOI | MR | Zbl

[3] H. Upmeier, Toeplitz operators and index theory in several complex variables, Birkhäser Verlag, Basel, 1996 | MR | Zbl

[4] V. Guillemin, “Toeplitz operators in $n$ dimensions”, Integral Equations and Operator Theory, 7 (1984), 145–205 | DOI | MR | Zbl

[5] L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Annals of Math. Studies, 99, Princeton University Press, NJ, 1981 | MR | Zbl

[6] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995 | MR | Zbl

[7] R. B. Melrose, The Atiyah–Patodi–Singer Index Theorem, Wellesley, Massachusetts, 1992 | MR

[8] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl

[9] N. Tarkhanov, “Operator algebras related to the Bochner–Martinelli integral”, Complex Variables, 51:3 (2006), 197–208 | DOI | MR | Zbl

[10] M. F. Atiyah, I. M. Singer, “The index of elliptic operators. I–V”, Ann. of Math., 87:3 (1968), 484–530 ; Ann. of Math., 87:3 (1968), 531–545 ; Ann. of Math., 87:3 (1968), 546–604 ; Ann. of Math., 93:1 (1971), 119–138 ; Ann. of Math., 93:1 (1971), 139–149 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[11] J. W. Helton, R. E. Howe, “Traces of commutators of integral operators”, Acta Math., 138:3–4 (1975), 271–305 | DOI | MR