D'Alembert's paradox in near real conditions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 170-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper examines the D'Alembert's paradox in the flow of ideal incompressible medium around a cylinder when flow conditions are close to real ones. The velocity profile of incoming flow is specified on a section at a finite distance from the cylinder. An additional parameter is introduced to determine the degree of asymmetry of the incoming flow. Initially, the value оf this parameter is assumed to be small. The parameter that determines the geometric dimensions of the cylinder is also introduced. Some cases are identified when the situation is close to D'Alembert's paradox in its classic version, and when it is not. It depends on the values of introduced parameters.
Keywords: ideal incompressible medium, flow around a cylinder, integral, velocity profile, asymmetrical flow, lift, drag.
Mots-clés : Euler equations
@article{JSFU_2017_10_2_a3,
     author = {Alexander V. Koptev},
     title = {D'Alembert's paradox in near real conditions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {170--180},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a3/}
}
TY  - JOUR
AU  - Alexander V. Koptev
TI  - D'Alembert's paradox in near real conditions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 170
EP  - 180
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a3/
LA  - en
ID  - JSFU_2017_10_2_a3
ER  - 
%0 Journal Article
%A Alexander V. Koptev
%T D'Alembert's paradox in near real conditions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 170-180
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a3/
%G en
%F JSFU_2017_10_2_a3
Alexander V. Koptev. D'Alembert's paradox in near real conditions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 170-180. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a3/

[1] L. I. Sedov, Continuum Mechanics, v. 2, Nauka, M., 1970 (in Russian) | MR | Zbl

[2] N. E. Kochin, I. A. Kibel, N. V. Rose, Theoretical Hydromechanics, v. 1, Fismatlit, M., 1963 (in Russian) | MR

[3] S. V. Vallander, Lectures on Hydroaeromechanics, Leningrad Gos. Univ., L., 1978 (in Russian)

[4] G. K. Batchelor, Introduction to Fluid Dynamics, Cambridge Univsrsity Press, 1967 | MR | Zbl

[5] G. Grinberg, W. Pauls, U. Frish, “Genesis of d'Alembert's paradox and analitical elaboration of the drag problem”, Physica D, 237 (2008), 1878–1886 | DOI | MR

[6] L. D. Landau, E. M. Lifshits, The Course of Theoretical Physics. Fluid Mechanics, Nauka, M., 1986 (in Russian) | MR

[7] A. V. Koptev, “Integrals of Navier–Stokes equations”, Saransk. Trudi Srednevolzhskogo matematicheskogo obshchestva, 6:1 (2004), 215–225 (in Russian)

[8] A. V. Koptev, “First integral and ways of further integration of Navie–Stokes equations”, Izv. Ros. gos. pedagog. univ. A. I. Gertsena, Saint-Petersburg, 147 (2012), 7–17 (in Russian)

[9] A. V. Koptev, “First integral of equations for icompressible fluid flow”, Proceedings of 11-th All-Russian Congress on fundamental problems of theoretical and applied mechanics, Povolzhskiy federalniy universitet, Kazan, 2015, 1957–1959 (in Russian)

[10] A. V. Koptev, “Generator of Solution of 2D Navier–Stokes Equations”, Journal of Siberian Federal University. Math. and Phys., 7:3 (2014), 324–330 | MR

[11] A. V. Koptev, “Structure of Solution of the Navier–Stokes Equations”, Vestnik natsionalnogo issledovatelskogo yadernogo universiteta MEPI, 3:6 (2014), 656–660

[12] A. H. Nayfeh, Perturbation Methods, John Wiley Sons, Inc., 1973 | MR | Zbl